腾讯云云服务器

Linux 云服务器运维

【版权声明】

©2013-2017 腾讯云版权所有

本文档著作权归腾讯云单独所有,未经腾讯云事先书面许可,任何主体不得以任何形式复制、修改、抄袭、传播全部或部分本文档内容。

【商标声明】

及其它腾讯云服务相关的商标均为腾讯云计算(北京)有限责任公司及其关联公司所有。本文档涉及的第三方 主体的商标,依法由权利人所有。

【服务声明】

本文档意在向客户介绍腾讯云全部或部分产品、服务的当时的整体概况,部分产品、服务的内容可能有所调整 。您所购买的腾讯云产品、服务的种类、服务标准等应由您与腾讯云之间的商业合同约定,除非双方另有约定 ,否则,腾讯云对本文档内容不做任何明示或模式的承诺或保证。

文档目录

文档声明	2
Linux 云服务器运维	
Linux 常用操作及命令	4
挂载数据盘	
使用 MBR 分区表分区并格式化	
使用 GPT 分区表分区并格式化	
Windows 重装为 Linux 后读写原 NTFS 类型数据盘	
环境配置	
CentOS 下 LNMP 环境配置	
SUSE 下 LNMP 环境配置	
Ubuntu 下 LNMP 环境配置	
Linux 电源管理配置	
批量重置在线 Linux 云服务器密码	
搭建 FTP 服务	
文件上传	52
Windows 机器通过 WinSCP 上传文件	52
Windows 机器通过 FTP 上传文件	54
Linux 机器通过 SCP 上传文件	60
安装软件	
Ubuntu 环境下通过 Apt-get 安装软件	
CentOS 环境下通过 YUM 安装软件	63
Opensuse环境下通过 zypper 安装软件	66
访问公网	
无公网 CVM 通过带公网 CVM 出访公网	
腾讯云软件源加速软件包下载和更新	73
网络性能测试方案	82
无法创建 Network Namespace 解决方案	

Linux 云服务器运维

Linux 常用操作及命令

1. 什么是linux服务器load average?

Load是用来度量服务器工作量的大小,即计算机cpu任务执行队列的长度,值越大,表明包括正在运行和待运行的进程数越多。

参考资料: <u>http://en.wikipedia.org/wiki/Load_average</u>

2. 如何查看linux服务器负载?

可以通过w, top, uptime, procinfo命令, 也可以通过/proc/loadavg文件查看。 procinfo工具安装请参考Linux环境下安装软件。

3. 服务器负载高怎么办?

服务器负载 (load/load average) 是根据进程队列的长度来显示的。

当服务器出现负载高的现象时(建议以15分钟平均值为参考),可能是由于CPU资源不足,I/O读写瓶颈,内 存资源不足等原因造成,也可能是由于CPU正在进行密集型计算。

建议使用vmstat

-x, iostat, top命令判断负载过高的原因, 然后找到具体占用大量资源的进程进行优化处理。

4. 如何查看服务器内存使用率?

可以通过free, top(执行后可通过shitf+m对内存排序), vmstat, procinfo命令, 也可以通过/proc/memi nfo文件查看。

5. 如何查看单个进程占用的内存大小?

可以使用top -p PID, pmap -x PID, ps aux|grep PID命令,也可以通过/proc/\$process_id(进程的PID)/status文件查看,例如/proc/7159/status文件。

6. 如何查看正在使用的服务和端口?

可以使用netstat -tunlp , netstat -antup , lsof -i:PORT命令查看。

7. 如何查看服务器进程信息?

可以使用ps auxww|grep PID, ps -ef, lsof -p PID, top -p PID命令查看。

8. 如何杀死进程?

可以使用kill -9 PID(进程号), killall 程序名(比如killall cron)来杀死进程。 如果要杀死的是僵尸进程,则需要杀掉进程的父进程才有效果,命令为: kill -9 ppid(ppid为父进程ID号,可以通过ps -o ppid PID查找,例如ps -o ppid 32535)。

9. 如何查找僵尸进程?

可以使用top命令查看僵尸进程(zombie)的总数,使用ps-ef|grep defunct|grep-v grep查找具体僵尸进程的信息。

10. 为什么启动不了服务器端口?

服务器端口的启动监听,需要从操作系统本身以及应用程序查看。 linux操作系统1024以下的端口只能由root用户启动,即需要先运行sudo su --获取root权限后再启用服务端口。 应用程序问题,建议通过应用程序启动日志来排查失败原因,例如端口冲突(腾讯服务器系统使用端口不能占

用,比如36000),配置问题等。

11. 常用的linux服务器性能查看命令有哪些?

命令名称	说明
top	进程监控命令,用来监控系统的整体性能。

	可以显示系统负载 , 进程 , cpu , 内存 , 分页等信息 ,
	常用shift+m和shift+p来按memory和cpu使用对进程
	进行排序。
vmstat	系统监控命令,重点侧重于虚拟内存,也可以监控cpu
	,进程,内存分页以及IO的状态信息。
	例如 , vmstat 3 10 , 每隔3秒输出结果 , 执行10次。
iostat	用于输出cpu状态和IO状态的工具,可以详细展示系统
	的IO信息。
	例如iostat -dxmt
	10,每10秒以MB的格式输出IO的详细信息。
df	用来检查系统的磁盘空间占用状况。
	例如:df-m,以MB为单位展现磁盘使用状况。
lsof	列举系统中被打开的文件,由于linux是以文件系统为基
	础,此命令在系统管理中很有帮助。
	版IIbn ·
	」。 sof-i:36000、显示使用36000端口的进程
	lsof -u root,显示以root运行的程序
	lsof -c php-fpm , 显示php-fpm进程打开的文件
	lsof php.ini , 显示打开php.ini的进程。
ps	进程查看命令,可以用来显示进程的详细信息。
	常用命令参数组合为,ps -ef , ps aux , 推荐使用ps
	-A -o来自定义输出字段。
	例如:
	ps -A -o

pid,stat,uname,%cpu,%mem,rss,args,lstart,etime |sort -k6,6 -rn , 按所列字段输出并以第六个字段进行排序 ps -A -o comm |sort -k1 |uniq -c|sort -k1 -rn|head , 列出运行实例最多的进程。

其他常用的命令和文件, free -m, du, uptime, w, /proc/stat, /proc/cpuinfo, /proc/meminfo。 参考资料: <u>http://en.wikipedia.org/wiki/Template:Unix_commands, http://www.linuxmanpages.com/</u>

12. Cron不生效怎么办?

排查步骤如下:

1) 确认crontab是否正常运行。

可以运行命令crontab -e添加如下测试条目*/1 * * * * /bin/date >> /tmp/crontest 2>&1

&,然后观察/tmp/crontest文件。

如果有问题,建议使用ps aux|grep cron查找cron的pid, kill -9

PID结束cron进程,然后通过/etc/init.d/cron start重新启动cron。

2) 确认cron条目中的脚本路径为绝对路径。

3) 查看运行cron的用户帐号是否正确,同时查看/etc/cron.deny中是否包含此账户。

4) 检查脚本的执行权限,脚本目录以及日志的文件权限。

5) 建议通过后台方式运行脚本,在脚本条目后添加 "&",例如,*/1****/bin/date >> /tmp/crontest 2>&1 &

13. 如何设置云服务器开机任务?

Linux内核启动顺序为:

/sbin/init进程启动,

然后依次执行init初始脚本,

运行级别脚本/etc/rc.d/rc*.d,*号值等于运行模式,可以在/etc/inittab中查看,最后执行/etc/rc.d/rc.local。

如果需要配置开机任务,可以在/etc/rc.d/rc*.d中的S**rclocal文件配置,也可以在/etc/rc.d/rc.local中配置。

14. 为什么服务器硬盘只读?

硬盘只读的常见原因如下:

1) 磁盘空间满

可以通过df -m命令查看磁盘使用情况,然后删除多余的文件释放磁盘空间(非第三方文件不建议删除,如果 需要请确认);

2) 磁盘inode资源占用完

可以通过df-i命令查看,确认相关的进程;

3) 硬件故障

如果hosting应用通过上述方式仍无法确认原因,请拨打咨询热线4009100100或提交工单协助定位。

15. 如何查看linux系统日志?

系统级别的日志文件存放路径为/var/log。

常用的系统日志为/var/log/messages。

16. 如何查找文件系统大文件?

可以首先通过df命令查看磁盘分区使用情况,比如df -m; 然后通过du命令查看具体文件夹的大小,比如du -sh ./*, du -h --max-depth=1|head -10; 使用ls命令列出文件以及大小,比如ls -lSh; 另外,也可以通过find命令直接查看特定目录下的文件大小,比如find / -type f -size +10M -exec ls -lrt {};

17. 如何查看服务器操作系统版本?

可以通过下列命令查看系统版本: uname -a, cat /proc/version, cat /etc/issue

18. 为什么linux终端显示中文会出现乱码?

服务器本身没有对显示语言有限制,如果是终端软件的影响中文的显示,可以尝试调整【选项】-【会话选项】 -【外观】(secureCRT设置,其他版本软件请查找相关设置);

如果是纯Linux

shell出现乱码,请使用export命令查看用户环境变量,查看LANG,LC_CTYPE等环境变量设置。

19. 如何设置通过SecureCRT连接云服务器的超时时间?

可以通过如下设置,使SecureCRT连接云服务器时,不断开连接:

打开secureCRT选项(Options),选择会话选项(Session

Opetions),点击终端(Terminal),在右侧反空闲(Anti-idle)的框中勾选发送协议NO-OP(Send protocol NO-OP),时间设置为每120秒(every 120 seconds)。

20. 为什么删除linux服务器上的文件,硬盘空间不释放?

有时,登录linux服务器执行 rm 命令删除文件后,用 df 命令查看硬盘空间,发现删除文件后可用的硬盘空间没有增加。原因是通过 rm 命令删除文件的时候,如果正好有其它进程在访问该文件,通过 df 命令查看,删除的文件占用的空间是没有立即释放的。

解决方法:

使用root权限执行 lsof |grep deleted ,查看正在使用被删除文件的进程的PID,通过命令 kill -9 PID 杀掉对应的进程即可。

挂载数据盘

使用 MBR 分区表分区并格式化

注意:

- 本方法仅适用于容量小于 2TB 的硬盘进行分区及格式化。大于 2TB
 的硬盘的分区及格式化请使用 GPT方式,可参阅 使用 GPT 分区表分区并格式化。
- 格式化后,数据盘中的数据将被全部清空。请在格式化之前,确保数据盘中没有数据或已对重
 要数据进行备份。为避免服务发生异常,格式化前请确保云服务器已停止对外服务。

手动格式化

请根据以下步骤对数据盘进行分区以及格式化,并挂载分区使数据盘可用。

注意:

• 执行下述命令时,请注意修改数据盘符。下文均以

vdb

为例,若是其他盘符,仅需将

vdb

替换为对应盘符即可。例如,盘符为

xvdb

,则在命令

fdisk /dev/vdb

中须替换为

fdisk /dev/xvdb

。您可使用命令

fdisk -l

查看盘符等相关信息。

• 请确认路径为正确,若错填为

/dev/vda

,将会造成云主机崩溃。

步骤一:查看数据盘信息

登录 Linux 云服务器后,使用以下命令查看数据盘相关信息:

fdisk -l

注意: 若使用

df -h

命令,无法看到未分区和格式化的数据盘。

[root@VM 175 199 centos ~]# fdisk -1 Disk /dev/vda: 53.7 GB, 53687091200 bytes, 104857600 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk label type: dos Disk identifier: 0x000c7a75 Device Boot Start End Blocks Id System /dev/vda1 * 2048 104857599 52427776 83 Linux Disk /dev/vdb: 32.2 GB, 32212254720 bytes, 62914560 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes

步骤二:数据盘分区

1. 执行以下命令对数据盘进行分区:

fdisk /dev/vdb

2. 按照界面的提示,依次键入

n

(新建分区)、

р

(新建扩展分区)、

1

(使用第1个主分区),两次回车(使用默认配置),

w

(保存分区表),开始分区。

注意:

此处是以创建1个分区为例,开发者也可以根据自己的需求创建多个分区。

[root@VM 175 199 centos ~]# fdisk /dev/vdb Welcome to fdisk (util-linux 2.23.2). Changes will remain in memory only, until you decide to write them. Be careful before using the write command. Device does not contain a recognized partition table Building a new DOS disklabel with disk identifier 0xda1fca9a. Command (m for help): n Partition type: p primary (0 primary, 0 extended, 4 free) extended e Select (default p): p Partition number (1-4, default 1): 1 First sector (2048-62914559, default 2048): Using default value 2048 Last sector, +sectors or +size{K,M,G} (2048-62914559, default 62914559): Using default value 62914559 Partition 1 of type Linux and of size 30 GiB is set Command (m for help): w The partition table has been altered! Calling ioctl() to re-read partition table. Syncing disks.

步骤三:查看新分区

使用以下命令可查看新分区信息:

fdisk -l

如图,示例中新的分区 vdb1 已经创建完成。

[root@VM_175_199_centos ~]# fdisk -1										
Disk /dev/vda: 53.7 GB, 53687091200 bytes, 104857600 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk label type: dos Disk identifier: 0x000c7a75										
Device Boot /dev/vda1 *	Start 2048	End 104857599	Blocks 52427776	Id 83	System Linux					
Disk /dev/vdb: 3 Units = sectors Sector size (log I/O size (minimu Disk label type: Disk identifier:	2.2 GB, 322 of 1 * 512 ical/physic m/optimal): dos 0xda1fca9a	12254720 byt = 512 bytes al): 512 byt 512 bytes /	es, 62914560 es / 512 byt 512 bytes) sec :es	tors					
Device Boot /dev/vdb1	Start 2048	End 62914559	Blocks 31456256	Id 83	System Linux					

步骤四:格式化新分区

注意:

在进行分区格式化时,开发者可以自行决定文件系统的格式,如 ext2、ext3 等。示例采用

ext3

格式。

执行以下命令对新分区进行格式化:

mkfs.ext3 /dev/vdb1

[root@VM 175 199 centos ~]# mkfs.ext3 /dev/vdb1 mke2fs 1.42.9 (28-Dec-2013) Filesystem label= OS type: Linux Block size=4096 (log=2) Fragment size=4096 (log=2) Stride=0 blocks, Stripe width=0 blocks 1966080 inodes, 7864064 blocks 393203 blocks (5.00%) reserved for the super user First data block=0 Maximum filesystem blocks=4294967296 240 block groups 32768 blocks per group, 32768 fragments per group 8192 inodes per group Superblock backups stored on blocks: 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208, 4096000 Allocating group tables: done Writing inode tables: done Creating journal (32768 blocks): done Writing superblocks and filesystem accounting information: done

步骤五:挂载新分区

1. 执行以下命令创建 mydata 目录:

mkdir /mydata

2. 执行以下命令手动挂载新分区:

mount /dev/vdb1 /mydata

3. 最后使用以下命令查看新分区信息:

df -h

出现如图信息则说明挂载成功,即可以查看到数据盘了。

					1 - + -
[root@VM_175_	199_cent	os ~]‡	mkdii	c /myc	lata
[root@VM_175_	199_cento	os ~]‡	mount	: /det	v/vdb1 /mydata
[root@VM_175_	199_cento	os ~]‡	df -ł	1	
Filesystem	Size	Used	Avail	Use≹	Mounted on
/dev/vda1	50G	1.5G	46G	4%	/
devtmpfs	488M	0	488M	0%	/dev
tmpfs	497M	24K	497M	18	/dev/shm
tmpfs	497M	268K	497M	1%	/run
tmpfs	497M	0	497M	0%	/sys/fs/cgroup
tmpfs	100M	0	100M	0%	/run/user/0
/dev/vdb1	30G	45M	28G	1%	/mydata

步骤六:添加分区信息

如果希望云服务器在重启或开机时能自动挂载数据盘,必须将分区信息添加到

/etc/fstab

中。如果没有添加,则云服务器重启或开机后,都不能自动挂载数据盘。

注意:

• 请确认分区路径是否为

/dev/vdb1

,若路径错误,将会造成云主机重启失败。

• 添加分区信息前可使用

lsblk -f

命令查看数据盘格式。示例以

ext3

为例。

1. 使用以下命令添加分区信息:

echo '/dev/vdb1 /mydata ext3 defaults 0 0' >> /etc/fstab

2. 使用以下命令查看分区信息:

cat /etc/fstab

出现如图信息则说明添加分区信息成功。

[root@VM_175_19	99_centos ~]# echo '/dev/v	db1 /mydata	a ext3 defaults 0 0'	>> /etc/fstab
[root@VM_175_19	99_centos ~]# cat /etc/fst	ab		
/dev/vda1		ext3	noatime,acl,user_x	attr 1 1
proc	/proc	proc	defaults	0 0
sysfs	/sys	sysfs	noauto	0 0
debugfs	/sys/kernel/debug	debugfs	noauto	0 0
devpts	/dev/pts	devpts	mode=0620,gid=5	0 0
/dev/vdb1 /mvda	ata ext3 defaults 0 0			

使用 GPT 分区表分区并格式化

新购买的 Linux 云服务器,由于数据盘未做分区和格式化,无法使用。

注意:

数据盘中的数据在格式化后将全部被清空。请在格式化之前,确保数据盘中没有数据或已对重要数据进行备份。为避免服务发生异常,格式化前请确保云服务器已停止对外服务。

非 FreeBSD 系统操作方法

1. 查看磁盘列表

使用命令

fdisk –l

查看磁盘设备列表。

```
Disk /dev/vdb: 53.7 GB, 53687091200 bytes, 104857600 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
```

2. 创建 GPT 分区

使用 parted 工具, 创建 GPT 分区。

1). 输入

parted /dev/vdb

命令。

2). 输入

mklabel gpt

命令, 再输入

print

将信息打印出来,此时会显示磁盘大小。

3). 输入

mkpart primary 0 磁盘大小

命令,并在提示警告时选择 ignore 忽视。

4). 输入

print

将信息打印出来。

[root@VM_79_42_centos ~]# parted /dev/vdb									
GNU Parted 3.1									
Using /dev/vdb									
Welcome to GNU Parted! Type 'help' to view a list of commands.									
(parted) mklabel gpt									
(parted) print									
Model: Virtio Block Device (virtblk)									
Disk /dev/vdb: 53.7GB									
Sector size (logical/physical): 512B/512B									
Partition Table: gpt									
Disk Flags:									
Number Start End Size File system Name Flags									
(parted) mkpart primary 0 53.7GB									
Warning: The resulting partition is not properly aligned for best performance.									
Ignore/Cancel? I									
(parted) print									
Model: Virtio Block Device (virtblk)									
Disk /dev/vdb: 53.7GB									
Sector size (logical/physical): 512B/512B									
Partition Table: gpt									
Disk Flags:									
Number Start End Size File system Name Flags									
1 17.4kB 53.7GB 53.7GB primary									

3. 查看新分区消息

分区创建完成后,可使用

fdisk -l

语句查看新分区信息。

Disk /dev	/vdb: 53.	7 GB, 53687091	L200 by	ytes, 10485	7600 s	ectors
Units = s	ectors of	1 * 512 = 512	2 bytes	3		
Sector si	ze (logio	al/physical):	512 by	ytes / 512	bytes	
I/O size	(minimum/	optimal): 512	bytes	/ 512 byte	3	
Disk labe	l type: o					
#	Start	End	Size	Type		Name
1	34	104857566	50G	Microsoft	basic	primary

4. 格式化分区

使用 mkfs 工具格式化分区:执行

mkfs.ext4 -T largefile 磁盘

```
[root@VM 79 42 centos ~]# mkfs.ext4 -T largefile /dev/vdb1
mke2fs 1.42.9 (28-Dec-2013)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks
51200 inodes, 13107191 blocks
655359 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=2162163712
400 block groups
32768 blocks per group, 32768 fragments per group
128 inodes per group
Superblock backups stored on blocks:
        32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208,
        4096000, 7962624, 11239424
Allocating group tables: done
Writing inode tables: done
Creating journal (32768 blocks): done
Writing superblocks and filesystem accounting information: done
```

5. 挂载新分区

格式化完成后,执行命令

mount 文件系统 分区路径 挂载点

挂载新分区。

此时使用命令

df –h

可以查看到磁盘剩余容量。

[root@VM_79_42	centos	~]#1	mount -	-t ext	t4 /dev/vdb1 /data
[root@VM_79_42	centos	~]#	df -h		
Filesystem	Size	Used	Avail	Use%	Mounted on
/dev/vda1	50G	1.5G	46G	48	/
devtmpfs	488M	0	488M	0%	/dev
tmpfs	497M	24K	497M	1%	/dev/shm
tmpfs	497M	296K	497M	1%	/run
tmpfs	497M	0	497M	0%	/sys/fs/cgroup
tmpfs	100M	0	100M	0%	/run/user/0
/dev/vdb1	50G	53M	48G	1%	/data

6. 设置自动挂载

修改 fstab 文件,设置系统重启时自动挂载新分区。 执行命令

vi /etc/fstab

,进入编辑页面,键入

i

进入编辑模式;

将

/dev/vdb1 /data ext4 defaults 0 0

添加至文本末端,再按 Esc 键,输入

:wq

保存并返回到命令行,此时已成功修改 fstab 文件。

/dev/vda1		ext3	noatime, acl, user_x	attr 1 1
proc	/proc	proc	defaults	0 0
sysfs	/sys	sysfs	noauto	0 0
debugfs	/sys/kernel/debug	debugfs	noauto	0 0
devpts	/dev/pts	devpts	mode=0620,gid=5	0 0
/dev/vdb1	/data	ext4	defaults	00
~				
-				
-				
-				
INSERT				

FreeBSD 系统操作方法

1. 查看磁盘列表

使用命令

diskinfo -v /dev/vtbd1

查看磁盘设备列表。

root@VM 126 89 freebsd:	~ # diskinfo -v /dev/vtbd1
/dev/vtbd1	
4096	# sectorsize
10737418240	# mediasize in bytes (10G)
2621440	# mediasize in sectors
0	# stripesize
0	# stripeoffset
2925	# Cylinders according to firmware.
16	# Heads according to firmware.
56	# Sectors according to firmware.
	# Disk ident.

2. 创建 GPT 分区

1).执行命令

gpart create -s gpt vtbd1

root@VM_126_89_freebsd:~ # gpart create -s gpt vtbd1 vtbd1 created

2).执行命令

gpart add -t freebsd-ufs -a 1M vtbd1

root@VM_126_89_freebsd:~ # gpart add -t freebsd-ufs -a 1M vtbd1 vtbd1p1 added

3. 查看新分区消息

使用命令

diskinfo -v /dev/vtbd1

查看新分区消息。

4. 格式化分区

使用 newfs 工具格式化分区。执行命令

newfs -j /dev/vtbd1p1

5. 挂载新分区

•

格式化完成后,执行命令

mount 文件系统 分区路径 挂载点

挂载新分区。

此时使用命令

df –h

可以查看到磁盘剩余容量。

6. 设置自动挂载

修改 /etc/fstab 文件 , 设置系统重启时自动挂载新分区。 执行命令

vi /etc/fstab

,进入编辑页面,键入

i

进入编辑模式;

将

/dev/vtbd1p1 /ufs rw 0 0

添加至文本末端,再按 Esc 键,输入

:wq

保存并返回到命令行,此时已成功修改 fstab 文件。

# Device	Mountpoint	FStype	Options	Dump	Pass#
/dev/vtbd0p2	/	ufs	rw	1	1
/dev/vtbd1p1	/	ufs	rw	0	0

Windows 重装为 Linux 后读写原 NTFS 类型数据盘

Windows 的文件系统通常使用 NTFS 或者 FAT32 格式,而 Linux 的文件系统格式通常是 EXT 系列。当操作系统从 Windows 重装为 Linux 后,操作系统类型发生了变化,而数据盘仍然是原来的格式,因 此重装后的系统可能出现无法访问数据盘文件系统的情况。

用户可在重装后的 Linux 云服务器上执行以下操作读取原 Windows 系统下的数据盘数据:

1. 在 Linux 系统上使用以下命令安装 ntfsprogs 软件使得 Linux 系统能够支持 NTFS 文件系统:

yum install ntfsprogs

- 将 Windows 下的数据盘挂载至 Linux 云服务器。若数据盘已挂载则可跳过此步骤。
 登录 <u>腾讯云控制台</u>,进入左侧【云硬盘】选项卡,单击需要进行挂载的 Windows
 数据盘对应的【更多】>【挂载到云主机】按钮。在弹出框中选择重装后的 Linux 云服务器,单击确定 按钮即可完成挂载。
- 3. 在 Linux 云服务器上使用命令

parted -l

查看从 Windows 中挂载过来的数据盘。

Model: Virtio Block Device (virtblk) Disk /dev/vde: 21.5GB Sector size (logical/physical): 512B/512B Partition Table: gpt											
Number 1 2	Start 17.4kB 135MB	End 134MB 3331MB	Size 134MB 3196MB	File system ntfs	Name Microsoft reserved partition Basic data partition	Flags msftres					

4. 使用命令

mount -t ntfs-3g 数据盘路径 挂载点

挂载数据盘。

[root@VM_127_193_centos ~]# mount -t ntfs-3g /dev/vde2 mnt/ [root@VM_127_193_centos ~]# ls mnt/ \$RECYCLE.BIN test.txt

由于此时的文件系统可识别,挂载的数据盘可直接被 Linux 系统读写。

环境配置

CentOS 下 LNMP 环境配置

LNMP 环境代表 Linux 系统下 Nginx + MySQL + PHP 网站服务器架构。本文档介绍 CentOS 下的 LNMP 环境搭建。

本文档包含软件安装内容,请确保您已熟悉软件安装方法,请参见 CentOS 环境下通过 YUM 安装软件。

安装配置 Nginx

1. 自动安装 Nginx。输入命令:

yum install nginx service nginx start chkconfig --levels 235 nginx on

2. 启动 Nginx 服务。输入命令:

service nginx restart

3. 命令行测试 Nginx 服务是否正常运行。输入命令:

wget http://127.0.0.1

若服务正常,显示结果如下。

--2013-02-20 17:07:26-- http://127.0.0.1/
Connecting to 127.0.0.1:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 151 [text/html]
Saving to: `index.html'

100%[======>] 151 --.-K/s in 0s 2013-02-20 17:07:26 (37.9 MB/s) - `index.html' saved [151/151]

4. 浏览器中测试 Nginx 服务是否正常运行。访问 CentOS 云服务器公网 IP。

安装配置 MySQL

- 1. 安装 MySQL。输入以下命令:
 - 。适用于 CentOS 7.0 或以后版本:

yum install mariadb mariadb-server

。适用于 CentOS 6.8 或以前版本:

yum install mysql mysql-server mysql-devel

2. 启动 MySQL 服务。输入命令:

service mysqld start

3. 登录 MySQL , 删除空用户。输入命令:

mysql>select user,host,password from mysql.user; mysql>drop user ''@localhost;

4. 修改 root 密码。输入命令:

mysql>update mysql.user set password = PASSWORD('此处输入您新设密码') where user='root'; mysql>flush privileges;

安装配置 PHP

1. 安装 PHP 。输入命令进行安装:

yum install php lighttpd-fastcgi php-cli php-mysql php-gd php-imap php-ldap php-odbc php-pear php-xml php-xmlrpc php-mbstring php-mcrypt php-mssql php-snmp php-soap

2. 安装所需组件使 PHP 支持 MySQL、FastCGI 模式。

yum install php-tidy php-common php-devel php-fpm php-mysql

Nginx 与 PHP-FPM 集成

1. 启动 PHP-FPM。输入命令启动 PHP-FPM 服务:

service php-fpm start

2. 输入命令查看 PHP-FPM 默认配置:

cat /etc/php-fpm.d/www.conf |grep -i 'listen ='

返回结果为:

listen = 127.0.0.1:9000

,表明 PHP-FPM 默认配置的监听端口为 9000,只需修改配置,将 PHP 解析的请求转发到 127.0.0.0:9000 处理即可。

3. 修改 Nginx 配置。

输入命令查找 Nginx 配置文件:

nginx -t

使用

vi

命令修改该配置文件:

[rootQVM_198_149_centos conf.d]# nginx -t nginx: the configuration file /etc/nginx/nginx.conf syntax is ok nginx: configuration file /etc/nginx/nginx.conf test is successful [rootQVM_198_149_centos conf.d]# vi /etc/nginx/nginx.conf

在配置文件中找到以下片段,修改红色部分:

server {

listen 80;

root /usr/share/nginx/html;

server_name localhost;

#charset koi8-r;

#access_log /var/log/nginx/log/host.access.log main;


```
location / {
 index index.html index.htm;
 }
 #error_page 404 /404.html;
 # redirect server error pages to the static page /50x.html
 #
 error_page 500 502 503 504 /50x.html;
 location = /50x.html {
 root /usr/share/nginx/html;
 }
 # pass the PHP scripts to FastCGI server listening on 127.0.0.1:9000
 #
 location ~ \.php$ {
 fastcgi_pass 127.0.0.1:9000;
 fastcgi_index index.php;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 include fastcgi_params;
 }
}
```

4. 修改完成后,按"Esc"键,输入":wq",保存文件并返回。

```
5. 查看配置是否正确。输入命令:
```

cat /etc/nginx/nginx.conf

6. 配置完成后,重启服务。输入命令:

service nginx restart

环境配置验证

用以下命令在 web 目录下创建 index.php:

vim /usr/share/nginx/html/index.php

写入如下内容:

<?php echo "<title>Test Page</title>"; echo "hello world"; ?>

在浏览器中,访问 CentOS 云服务器公网 IP ,查看环境配置是否成功。如果页面可以显示"hello world",说明配置成功。

SUSE 下 LNMP 环境配置

LNMP 环境代表 Linux 系统下 Nginx + MySQL + PHP 网站服务器架构。本文档介绍 SUSE 下的 LNMP 环境搭建。

本文档包含软件安装内容,请确保您已熟悉软件安装方法,请参见 Opensuse 环境下通过 YaST 安装软件。

安装配置 Nginx

1. 自动安装 Nginx。输入命令:

yum install nginx service nginx start chkconfig --levels 235 nginx on

- 2. 启动 Nginx 服务。输入命令:
 - service nginx restart
- 3. 命令行测试 Nginx 服务是否正常运行。输入命令:
 - wget http://127.0.0.1

若服务正常,显示结果如下。

4. 浏览器中测试 Nginx 服务是否正常运行。访问 CentOS 云服务器公网 IP。

安装配置 MySQL

•

0

1. 安装 MySQL。输入命令:

yum install mysql mysql-server mysql-devel

- 2. 启动 MySQL 服务。输入命令:
 - service mysqld start
- 3. 登录 MySQL , 删除空用户。输入命令:

mysql>select user,host,password from mysql.user; mysql>drop user ''@localhost;

4. 修改 root 密码。输入命令:

mysql>update mysql.user set password = PASSWORD('此处输入您新设密码') where user='root'; mysql>flush privileges;

安装配置PHP

1. 安装 PHP 。输入命令进行安装:

yum install php lighttpd-fastcgi php-cli php-mysql php-gd php-imap php-ldap php-odbc php-pear php-xml php-xmlrpc php-mbstring php-mcrypt php-mssql php-snmp php-soap

2. 安装所需组件使 PHP 支持 MySQL、FastCGI 模式。

yum install php-tidy php-common php-devel php-fpm php-mysql

Nginx 与 PHP-FPM 集成

1. 新建配置文件 php-fpm.conf, 输入命令:

vim /etc/php5/fpm/php-fpm.conf

```
2. 写入以下内容:
```

•

```
[global]
error_log = /var/log/php-fpm.log
[www]
```


user = nobody

group = nobody

listen = 127.0.0.1:9000

pm = dynamic

pm.max_children = 5

pm.start_servers = 2

pm.min_spare_servers = 1

- pm.max_spare_servers = 3
- 3. 启动服务。输入命令:

/etc/init.d/mysql start /etc/init.d/php-fpm start /etc/init.d/nginx start

如图所示:

VM_137_55_sles10_64:~ #	/etc/init.d/m	nysql start;	/etc/init.d/php-fpm	start: /etc	/init.d/nginx	start
Starting MySQL				done		
Starting php-fpm				done		
Starting nginx Checking	; for service n	ıginx		running		
				done		

环境配置验证

用以下命令在 web 目录下创建 index.php:

vim /usr/share/nginx/html/index.php

写入如下内容:

<?php

echo "<title>Test Page</title>";

echo "hello world";

?>

在浏览器中,访问 SUSE 云服务器公网 IP ,查看环境配置是否成功,如果页面可以显示"helloworld",说明配置成功。

Ubuntu 下 LNMP 环境配置

LNMP 环境代表 Linux 系统下 Nginx + MySQL + PHP 网站服务器架构。本文档介绍 Ubuntu 下的 LNMP 环境搭建。

本文档包含软件安装内容,请确保您已熟悉软件安装方法,请参见Ubuntu环境下通过Apt-get安装软件。

安装配置 Nginx

1. 自动安装 Nginx。输入命令:

sudo apt-get install nginx

。为了确保获得最新的 Nginx, 可以先使用

sudo apt-get update

命令更新源列表。

2. 启动 Nginx 服务。输入命令:

sudo /etc/init.d/nginx start

3. 命令行中测试 Nginx 服务是否正常运行。输入命令:

wget http://127.0.0.1

若服务正常,显示结果如下。

--2013-02-20 17:07:26-- http://127.0.0.1/ Connecting to 127.0.0.1:80... connected. HTTP request sent, awaiting response... 200 OK Length: 151 [text/html] Saving to: `index.html'

100%[======>] 151 --.-K/s in 0s 2013-02-20 17:07:26 (37.9 MB/s) - `index.html' saved [151/151]

4. 浏览器中测试 Nginx 服务是否正常运行。访问 Ubuntu 云服务器公网 IP。

安装配置 MySQL

۰

1. 安装 MySQL。输入命令:

sudo apt-get -y install MySQL-server mysql-client php7.1-mysql

- 2. 设置 root 用户密码。安装过程中将会让您设置密码。
- 3. 端口查看。安装完成后, 输入命令:

netstat -anp

,会发现 3306 端口正在被监听,此时已可以编写 PHP 脚本来连接数据库。

安装配置 PHP

1. 安装 PHP 。输入命令进行安装:

sudo apt-add-repository ppa:ondrej/php sudo apt-get update sudo apt-get install php7.1 php7.1-fpm

注意:

直接运行

sudo apt-get

命令安装 PHP 会报错误,原因是 PHP7 等并不在 Ubuntu 的软件库中,因此要使用 PPA ppa:ondrej/php 库。

2. 确认 PHP 启动方式。在

/etc/php7.1/fpm/pool.d/www.conf

路径里确认启动方式,使用

listen

搜索关键字查看 PHP 的 listen 监听方法。

listen = /var/run/php7.1-fpm.sock listen = 127.0.0.1:9000 ; 可监听上边的 sock 方式 , 若使用 ip:port 时 , 请自行添加该行

注意:

示例环境为 Ubuntu 12, 不同版本 PHP 配置路径可能不一样。

Nginx 与 PHP-FPM 集成

1. 启动 PHP-FPM。输入命令启动 PHP-FPM 服务:

sudo /etc/init.d/php7.1-fpm start

2. 输入命令查看 PHP-FPM 默认配置:

sudo netstat -tunpl | grep php-fpm

,如下图。

•

root@vm	-139-150-ubuntu:~# sudo r	netstat -tunpl g	rep php-fpm		
tcp	0 0 127.0.0.1:90	0.0.0	.0:*	LISTEN	2698/php-fpm.conf)
root@vm	_120_150_ubuntut_#				

以上结果表明 PHP-FPM 默认配置的监听端口为 9000,只需修改配置,将 PHP 解析的请求转发到 127.0.0.0:9000 处理即可。

3. 修改 Nginx 配置。输入修改命令:

sudo vim /etc/nginx/sites-available/default

找到下面的内容。

•

在配置文件的后面,写入如下内容:

location ~ \.php\$ {

fastcgi_pass 127.0.0.1:9000;

#fastcgi_pass unix:/var/run/php7.1-fpm.sock;

#根据php实际listen监听情况,自行选择php的启动方法

fastcgi_index index.php;

include fastcgi_params;

}

•

4. 修改完成后,按"Esc"键,输入":wq",保存文件并返回。

5. 查看配置是否正确。输入命令:

sudo cat /etc/nginx/sites-available/default

6. 配置完成后,重启服务。输入命令:

sudo /etc/init.d/nginx restart
sudo /etc/init.d/php7.1-fpm restart

环境配置验证

用以下命令在 web 目录下创建 index.php:

sudo vim /usr/share/nginx/www/index.php

写入如下内容:

```
<?php
echo "<title>Test Page</title>";
echo "hello world";
?>
```


在浏览器中,访问 Ubuntu 云服务器公网 IP ,查看环境配置是否成功。如果页面可以显示" hello world",说明配置成功。

Linux 电源管理配置

Linux 系统在没有安装 ACPI 管理程序时会导致软关机失败。本文档介绍检查 ACPI 安装情况与安装操作。

ACPI 介绍

- 概述: ACPI (Advanced Configuration and Power Interface),高级配置与电源管理。是 Intel、Microsoft 和东芝共同开发的一种电源管理标准。
- 比较:在x86机器中,存在两种电源管理方法,APM (Advanced Power Management,高级电源管理)和 ACPI (Advanced Configuration and Power Interface,高级配置和电源接口)。APM 是老标准,而 ACPI 则提供了管理电脑和设备更为灵活的接口 。Linux支持这两种协议,不过有时还需要手工配置。另外,两个标准不能同时运行。缺省情况下 Linux 运行 ACPI。腾讯云推荐您使用 ACPI 电源方案。
- CoreOS 系统说明: CoreOS 系统无需安装。

检查方法

输入命令检查 ACPI 是否安装:

ps -ef|grep -w "acpid"|grep -v "grep"

- 若无进程存在,则表示没有安装,需要进行下一步骤安装此模块。
- 若有进程存在,则表示已经安装,无需进行下一步骤。

安装方法

输入命令安装 ACPI 模块。

• Ubuntu / Debian 系统下:

sudo apt-get install acpid

• Redhat / CentOS 系统下:

yum install acpid

• SUSE 系统下:

in apcid

批量重置在线 Linux 云服务器密码

本文档介绍在多个 Linux 系统云服务器非关机状态下批量进行重置密码的操作。

脚本下载

腾讯云已为您编写好重置操作的脚本,下载该重置脚本,可方便的批量在线重置。下载地址:

http://batchchpasswd-10016717.file.myqcloud.com/batch-chpasswd.tgz

CentOS / SUSE 系统操作方法

- 1. 修改 hosts.txt 文件。输入命令:
 - vi /etc/hosts

将需要修改的信息按照【云主机 IP + SSH端口号 + 账号 + 旧密码 + 新密码】格式添加到文件内 , 每一行代表一个主机 , 如 :

10.0.0.1 22 root old_passwd new_passwd 10.0.0.2 22 root old_passwd new_passwd

> 注意: 若在公网上运行该脚本 , 云主机 IP 填写 公网 IP ; 若在内网上运行该脚本 , 云主机 IP 填写 内网 IP 。

2. 执行脚本文件。输入命令:

./batch-chpasswd.py

3. 返回示例:

-----change password for root@10.0.0.1 spawn ssh root@10.0.0.1 -p 22 root password: Authentication successful. Last login: Tue Nov 17 20:22:25 2015 from 10.181.XXX.XXX [root@VM_18_18_centos ~]# echo root:root | chpasswd [root@VM_18_18_centos ~]# exit logout change password for root@10.0.0.2 spawn ssh root@10.0.0.2 -p 22 root password: Authentication successful. Last login: Mon Nov 9 15:19:22 2015 from 10.181.XXX.XXX [root@VM_19_150_centos ~]# echo root:root | chpasswd [root@VM_19_150_centos ~]# exit logout

Ubuntu 系统操作方法

1. 修改 hosts.txt 文件。输入命令:

sudo gedit /etc/hosts

。此处调用系统默认编辑器,也可以使用其它文本编辑器编辑。 将需要修改的信息按照【云主机 IP + SSH端口号 + 账号 + 旧密码 + 新密码】格式添加到文件内,每一行代表一个主机,如:

10.0.0.1 22 root old_passwd new_passwd

10.0.0.2 22 root old_passwd new_passwd

注意: 若在公网上运行该脚本,云主机 IP 填写 公网 IP; 若在内网上运行该脚本,云主机 IP 填写 内网 IP。

2. 重启网络。输入命令:

sudo rcnscd restart

3. 执行脚本文件。输入命令:

python batch-chpasswd.py

搭建 FTP 服务

本文档介绍在 Linux 云服务器上搭建 FTP 服务的操作。本例使用 CentOS 7.2 64 位系统进行示例,使用 vsftpd 作为 FTP 服务端, FileZilla 作为客户端。

步骤一:安装 vsftpd

1. 登录云服务器。

2. 安装软件。输入命令:

yum install vsftpd -y

3. 界面出现" Complete !", 表示已安装完成。

步骤二:启动 vsftpd 服务

1. 启动服务。输入命令:

service vsftpd start

2. 命令确认是否启动。输入命令:

netstat -tunlp

,出现图中展示内容即表示已经启动。

[root@VM Active I	L_0_11_c nternet	entos ~]# netstat -tu connections (onlu se	unlp ervers)		
Proto Re	cv-Q Se	nd-Q Local Address	Foreign Address	State	PID/Program name
tcp	0	0 0.0.0.0:80	0.0.0 [°] .0:*	LISTEN	702/httpd
tcp	0	0 0.0.0.0:22	0.0.0:×	LISTEN	703/sshd
tcp6	0	0 :::3306	::: ×	LISTEN	1168/mysgld
tcp6	0	0 :::21	:::*	LISTEN	19124/vsftpd
tcp6	Ы	N :::ZZ	:::*	LISTEN	703/sshd
[root@VM	L_0_11_c	entos ~]# _			

3. 公网访问确认是否启动。在其他联网计算机上,通过命令行:

telnet + 云服务器公网 IP + 21

进行测试。出现下图内容即表示已经启动。

220 (vsFTPd 3.0.2)

步骤三:编辑 vsftpd 配置文件

- 1. 在云服务器中, 输入命令:
 - vi /etc/vsftpd/vsftpd.conf
- 2. 编辑内容, 状态更改为不允许匿名登录。按下键盘【a】开启编辑, 将文件中的

anonymous_enable=YES

改为

anonymous_enable=NO

,修改完成后按下键盘【Esc】,任意位置输入

: write

保存修改,输入

: quit

退出编辑。

#
READ THIS: This example file is NOT an exhaustive list of vsftpd options.
Please read the vsftpd.conf.5 manual page to get a full idea of vsftpd's
capabilities.
#
Allow anonymous FTP? (Reware - allowed by default if you comment this out).
anonymous_enable=NO
#
Uncomment this to allow local users to log in.
When SELinux is enforcing check for SE bool ftp_home_dir
local_enable=YES

步骤四:添加 FTP 用户

1. 添加用户。本例添加名为 ftpuser1 的用户。输入命令:

useradd -m -d /home/ftpuser1 -s /sbin/nologin ftpuser1

2. 设置用户登录密码。本例为 ftpuser1 用户设置登录密码。输入命令:

passwd ftpuser1

, 输入密码并确认即可。

常见问题

问题描述

部分用户在本地使用 FTP 客户端连接时可能遇到连接超时和读取目录列表失败的问题。如下图所示。

命令: PASV 错误: 连接超时 错误: 读取目录列表失败

问题出现在 PASV 命令处。原因在于 FTP 协议在腾讯云网络架构上的不适。FTP 客户端默认被动模式传输,因此在通信过程中会去寻找服务器端的 IP 地址进行连接,但是由于腾讯云的外网 IP 不是直接配在网卡上,因此在被动模式下客户端无法找到有效 IP (只能找到云服务器内网 IP ,内网 IP 无法直接和外网通信),故无法建立连接。

解决途径

- 将客户端传输模式改为主动即可;
- 如果客户端网络环境要求被动模式,那么需要在服务端 步骤三 中配置文件中新增这些语句:

pasv_address=XXX.XXX.XXX.XXX //(外网 IP) pasv_enable=YES pasv_min_port=1024 pasv_max_port=2048

文件上传

Windows 机器通过 WinSCP 上传文件

WinSCP 是一个在 Windows 环境下使用 SSH 的开源图形化 SFTP 客户端,同时支持 SCP 协议。它的主要功能是在本地与远程计算机之间安全地复制文件。与使用 FTP 上传代码相比,通过 WinSCP 可以直接使用服务器账户密码访问服务器,无需在服务器端做任何配置。

操作步骤

- 1. 下载 WinSCP 客户端并安装。下载地址:
 - 。<u>官方下载</u>
 - 。 <u>太平洋下载中心下载</u>
- 2. 安装完成后启动 WinSCP, 界面如下。按图示填写信息并登录。

➡ 新建站点	会活	
	文件协议(E)	
	SFTP	
	主机名(出)	端口号(<u>R</u>)
		22 🛋
	用户名(U)	密码(P)
	保存(S) ▼	高级(A) ▼

字段填写说明:

- 。协议:选填 SFTP 或者 SCP 均可。
- 主机名:云服务器的公网 IP。登录 <u>云服务器控制台</u>即可查看对应云服务器的公网 IP。
- 。端口:默认 22。
- 。 密码:云服务器的用户名对应的密码。
- 。用户名:云服务器的系统用户名。

- SUSE/CentOS/Debian 系统: root
- Ubuntu 系统: ubuntu
- 3. 信息填写完毕之后单击登录,界面如下:

5 · · · · · · · · · · · · · · · · · · ·
寻找主机
连接到主机
正在验证
使用用户名 "root"。
以预置密码进行验证。
已验证。
正在开始会话

4. 登录成功之后,鼠标选中左侧本地文件,拖拽到右侧的远程站点,即可将文件上传到 Linux 云服务器。

	W	linSCP							×
本地(L) 标记(M) 文件(F) 命令(C) 会	话(S) 选项(O) 远程	(R) 帮助(H	ł)			-		
🕀 🄁 📚 同步(S) 🗾	P 🗈	🎯 🔛 📦 🔍 A) (Q) • 传	俞选项 默认		-	100 -		
	🗳 新建	会话							
💻 桌面 🔹 🖆	🔽 🔶	🗈 🖬 🏠	2%	🛯 🔒 ht 🝷	🚰 🔽 <	• • • [叠 查找文件	(F) »
🔋 🞲 上传(U) 🎲 📝 编辑	l(E) 🗙 🛃	🗟 属性(P) 📑 »	+ »	圖 下载(D) 🚔 🛛	编辑(E) 🗙 🗹	。属性(P)	🗳 🖻 🖃	**
C:\Usei es	ktop\demo			/var/www	/html				
名字 扩展	大小	类型	已改变	名字	扩展	大	1 已改变		权
<u>.</u>		上级目录	2014/4/	÷			2014/4/8	16:26:24	rw
🖀 index.php	733 B	Notepad++ Doc	2014/4/	index.	html	221 8	2014/4/8	11:18:09	rw
[] sftp-config.json	1,398 B	JSON 文件	2014/4/	🔮 index.	php	730 8	2014/4/8	16:56:30	rw

Windows 机器通过 FTP 上传文件

用户可使用 FTP 通道,将应用程序从本地服务器上传到云服务器中。

操作步骤

步骤一:在云服务器配置 FTP 服务

以 CentOS 系统为例。

1. 在 root 权限下,通过命令

yum install vsftpd

安装 vsftp。

启动 vsftpd 服务之前,需要登录云服务器修改配置文件,禁用匿名登录。
 使用

vim /etc/vsftpd/vsftpd.conf

打开配置文件,将配置文件中第11行的

anonymous_enable=YES

改为

anonymous_enable=NO

即可禁用匿名登录。

3. 使用

cat /etc/vsftpd/vsftpd.conf |grep ^[^#]

命令读取生效配置。

返回结果为:

local_enable=YES
write_enable=YES
local_umask=022
anon_upload_enable=YES
anon_mkdir_write_enable=YES
anon_umask=022
dirmessage_enable=YES
xferlog_enable=YES
connect_from_port_20=YES
xferlog_std_format=YES
listen=YES
pam_service_name=vsftpd
userlist_enable=YES
tcp_wrappers=YES

4. 使用

service vsftpd start

命令启动 vsftpd 服务。

- 5. 设置 FTP 用户帐号。
 - 1).使用命令

useradd

设置 FTP 用户帐号。

例如,设置账号为"ftpuser1",目录为/home/ftpuser1,且设置不允许通过 SSH 登录的命令为:

useradd -m -d /home/ftpuser1 -s /sbin/nologin ftpuser1

2).使用命令

password

设置帐号对应密码。 例如,设置上述帐号密码为"ftpuser1"的命令为:

passwd ftpuser1

设置成功后,即可通过该账号及密码登录 FTP 服务器。

6. 修改 vsftpd 的 pam 配置,使用户可以通过自己设置的 FTP 用户帐号和密码连接到云服务器。 使用命令

vim /etc/pam.d/vsftpd

修改 pam 配置。 将 pam 配置内容修改为:

#%PAM-1.0

auth required /lib64/security/pam_listfile.so item=user sense=deny file=/etc/ftpusers onerr=succeed

auth required /lib64/security/pam_unix.so shadow nullok

auth required /lib64/security/pam_shells.so

account required /lib64/security/pam_unix.so

session required /lib64/security/pam_unix.so

通过命令

cat /etc/pam.d/vsftpd

确认修改后的文件是否正确。正确的返回结果应为:

auth required /lib64/security/pam_listfile.so item=user sense=deny file=/etc/ftpusers

onerr=succeed

auth required /lib64/security/pam_unix.so shadow nullok auth required /lib64/security/pam_shells.so account required /lib64/security/pam_unix.so session required /lib64/security/pam_unix.so

完成修改后,使用命令

service vsftpd restart

重启 vsftpd 服务,使修改生效。 结果为:

Shutting down vsftpd: [OK] Starting vsftpd for vsftpd: [OK]

步骤二:上传文件到 Linux 云服务器

1. 下载并安装开源软件 FileZilla。

请使用 FileZilla 的 3.5.1 或 3.5.2 版本 (使用 3.5.3 版本的 FileZilla 进行 FTP 上传会有问题)。 由于 FileZilla 官网上只提供了最新的 3.5.3 版本下载,因此建议用户自行搜索 3.5.1 或 3.5.2 的下载地址。

单击此处 可直达腾讯云建议的 3.5.1 下载地址。

2. 连接 FTP。

运行 FileZilla,进行主机、用户名、密码和端口配置,配置完成后单击快速链接。

23 FileZilla					
文件(F) 编辑(E) 查看(V) 传输	(T) 服务器(S) 书签(B) 素	響助(H)			
	n n 🖗 🖉 🖻 🖗 🖉	n			
主机(H): 月	户名(U): ftpuser1	密码(W):	•••••	端口(P): 21	快速连接(Q) ▼
本地站点: \			▼ 远程站点:		
□					
一 我的文档					
D:					
- -					
配置信息说明:					

- 。 主机:云服务器的公网 IP(登录 <u>云服务器控制台</u> 页面即可查看对应云服务器的公网 IP)。
- 。 用户名:在步骤一中设置的 FTP 用户的账号。图中以 "ftpuser1" 为例。
- 。密码:在步骤一中设置的 FTP 用户账号对应的密码。
- 。端口:FTP 监听端口,默认为 21。
- 3. 上传文件到 Linux 云服务器

上传文件时,鼠标选中本地文件,拖拽到远程站点,即可将文件上传到 Linux 云服务器。

本地站点: E:\工作\wiki Qcloud\wiki\test\	•	远程站点: /data/home/1251001003		-
e- Ja wiki	^			Â
—————————————————————————————————————		e-]] home		
—————————————————————————————————————	*	1251001003		*
文件名 ^	文件大小 文件类	文件名 ^	文件大小	文件类型
🍑		🎉		
🔐 cdn	文件夹	.bash_history	17	BASH_HIS
index1.php	24 PHP 文(bash_logout	18	BASH_LO
		bash_profile	187	BASH_PR
			124	BASHRC
		.kshrc	121	KSHRC 文件
		zshrc	658	ZSHRC 文件
۲	•	٠		F.

注意:

云服务器 FTP 通道不支持上传 tar 压缩包后自动解压,以及删除 tar 包功能。

Linux 机器通过 SCP 上传文件

Linux 机器可通过以下命令向 Linux 云服务器上传文件:

scp 本地文件地址 云服务器登录名@云服务器公网IP/域名:云服务器文件地址

例如,将本地文件

/home/lnmp0.4.tar.gz

上传到IP为

129.20.0.2

的 CentOS 系统云服务器对应目录下,应执行以下命令:

scp /home/Inmp0.4.tar.gz root@129.20.0.2:/home/Inmp0.4.tar.gz

按回车键并输入登录密码即可完成上传。

安装软件

Ubuntu 环境下通过 Apt-get 安装软件

为提升用户在云服务器上的软件安装效率,减少下载和安装软件的成本,腾讯云提供了 Apt-get 下载源。在 Ubuntu 环境下,用户可通过 Apt-get 快速安装软件。对于 Apt-get

下载源,不需要添加软件源,可以直接安装软件包。为了加速软件安装,目前系统已经在内网预先配置了 Ubuntu 的镜像,这是官方 x86_64 的完全镜像,与官网源一致。

安装步骤

- 1. 登录操作系统为 Ubuntu 的云服务器。
- 2. 通过以下命令安装软件:

sudo apt-get install 软件名称

Υ

进行安装,等待至软件安装完成即可。

查看已安装软件信息

软件安装完成后:

• 可通过命令

sudo dpkg -L 软件名

查看软件包所在的目录以及该软件包中的所有文件。

• 可通过命令

sudo dpkg -l 软件名

查看软件包的版本信息。

以 nginx 为例:

ubuntu@VM-179-94-ubuntu:~\$ sudo dpkg -I.	nginx		
/.			
/usr			
/usr/share			
/usr/share/doc			
/usr/share/doc/nginx			
/usr/share/doc/nginx/copyright			
/usr/share/doc/nginx/changelog.Debian.g	z		
ubuntu@VM-179-94-ubuntu:~\$ sudo dpkg -1	nginx		
Desired=Unknown/Install/Remove/Purge/Ho	ld		
Status=Not/Inst/Conf-files/Unpacked/h	alF-conf/Half-inst/trig	-aWait/Trig-pend	
<pre>// Err?=(none)/Reinst-required (Status.)</pre>	Err: uppercase=bad)		
/ Name	Version	Architecture	Description
+++-===================================			•
ii nginx	1.10.3-0ubuntu0.16.04.	all	small, powerful, scalable web/proxy server

CentOS 环境下通过 YUM 安装软件

为提升用户在云服务器上的软件安装效率,减少下载和安装软件的成本,腾讯云提供了 Yum 下载源。在 CentOS 环境下,用户可通过 Yum 快速安装软件。对于 Yum 下载源,用户不需要添加软件源,可以直接安装软件包。

安装步骤

1. 登录操作系统为 CentOS 的云服务器。默认已获取 root 权限。

注意:

严禁执行 password 命令, root 密码默认不能被修改。

2. 在 root 权限下,通过以下命令来安装软件:

yum install 软件名称

注意:

从 CentOS 7 系统开始, MariaDB 成为 yum 源中默认的数据库安装包。在 CentOS 7 及以上的系统中使用 yum 安装 MySQL 包将无法使用 MySQL。您可以选择使用完全兼容的 MariaDB, 或点击 <u>参阅此处</u>进行较低版本的 MySQL 的安装。

 输入上述命令后,系统将自动搜索相关的软件包和依赖关系,并且在界面中提示用户确认搜索到的软件 包是否合适。

例如 , 键入

yum install php

之后,界面显示如图:

Linux 云服务器运维产品文档

Package	Arch	Version	Repository	Size
Installing:				
php	x86 64	5.4.16-42.el7	OS	1.4 M
Installing for dependencie				
apr	x86 64	1.4.8-3.el7		103 k
apr-util	x86 64	1.5.2-6.el7	03	92 k
httpd	x86 64	2.4.6-45.el7.centos.4	updates	2.7 M
httpd-tools	x86 64	2.4.6-45.el7.centos.4	updates	84 k
libzip	x86_64	0.10.1-8.e17		48 k
mailcap	noarch	2.1.41-2.el7	os	31 k
php-cli	x86 64	5.4.16-42.el7	03	2.7 M
php-common	x86_64	5.4.16-42.el7		564 k
Transaction Summary				
Install 1 Package (+8 Dep	endent packages)			
Total download size: 7.7 M				
Installed size: 27 M				
Is this ok [y/d/N]:				

4. 确认软件包合适无误后, 键入

у

,开始安装软件。界面提示

Complete

即安装完成。

<pre>Installed: php.x86_64 0:5.4.16-42.el7</pre>			
Dependency Installed: apr.x86_64 0:1.4.8-3.el7 libzip.x86_64 0:0.10.1-8.el7	apr-util.x86_64 0:1.5.2-6.el7 mailcap.noarch 0:2.1.41-2.el7	httpd.x86_64 0:2.4.6-45.el7.centos.4 php-cli.x86_64 0:5.4.16-42.el7	httpd-tools.x86_64 0:2.4.6-45.el7.centos.4 php-common.x86_64 0:5.4.16-42.el7
Complete! [root@VM 79 42 centos ~]# []			

查看已安装软件信息

软件安装完成后:

• 可通过命令

rpm -ql 软件名

查看软件包具体的安装目录。

• 可通过命令

rpm -q 软件名

查看软件包的版本信息。

以 php 为例:

[root@VM_79_42_centos ~]# rpm -ql php /etc/httpd/conf.d/php.conf /etc/httpd/conf.modules.d/10-php.conf /usr/lib64/httpd/modules/libphp5.so /usr/share/httpd/icons/php.gif /var/lib/php/session [root@VM_79_42_centos ~]# rpm -q php php-5.4.16-42.el7.x86 64

Opensuse环境下通过 zypper 安装软件

为了提升用户在云服务器上的软件安装效率,减少下载和安装软件的成本,腾讯云提供了 zypper 下载源。操作系统为 Opensuse 及 部分 SLES 的云服务器用户可通过 zypper 快速安装软件。

1. 安装步骤

登录操作系统为 Opensuse 的云服务器后,默认已获取root权限,在此权限下,通过以下命令列出软件源:

zypper service-list

或

zypper sl

如果软件源中已经添加了可用源,则可以直接执行步骤3,正常进行软件下载和安装;

如果没有,请根据步骤2的说明添加软件源;

2. 添加软件源

如果上一步骤中没有列出软件源,则需要在root权限下,通过以下命令手动添加软件源:

zypper service-add

或

zypper sa

示例如下:

zypper sa -t YaST http://mirrors.tencentyun.com/opensuse opensuse

zypper sa -t YaST http://mirrors.tencentyun.com/opensuse/update update

3. 搜索软件包

通过以下命令搜索软件包:

zypper search

或

zypper se

示例如下:

zypper se nginx

4. 安装软件包

根据搜索到的软件包的名字安装软件。如果要安装多个软件,中间用空格隔开。

注:安装软件的时候,如果需要依赖包,会自动下载安装,用户无需自己安装依赖包。

通过以下命令安装软件包:

zypper install

版权所有:腾讯云计算(北京)有限责任公司

或

zypper in

示例如下:

zypper in nginx

可以按照相同的方式安装php和php-fpm等软件:

zypper in MySQL-server-community php5-mysql php5 php5-fpm

5. 查看安装的软件信息

软件安装完成后,可通过以下命令查看软件包具体的安装目录:

rpm -ql

可通过以下命令查看软件包的版本信息:

rpm -q

示例:

rpm -ql nginx rpm -q nginx

结果如下(实际的版本可能和此版本不一致,请以实际查询到的版本为准):

VM_146_44:~ # rpm -q1 nginx
/etc/init.d/nginx
/etc/logrotate.d/nginx
/etc/nginx
/etc/nginx/conf.d
<pre>/etc/nginx/conf.d/default.conf</pre>
<pre>/etc/nginx/conf.d/example_ssl.conf</pre>
/etc/nginx/fastcgi_params
/etc/nginx/koi-utf
/etc/nginx/koi-win
/etc/nginx/mime.types
/etc/nginx/nginx.conf
/etc/nginx/scgi_params
/etc/nginx/uwsgi_params
/etc/nginx/win-utf
/etc/sysconfig/nginx
/usr/sbin/nginx
/usr/share/nginx
/usr/share/nginx/html
/usr/share/nginx/html/50x.html
/usr/share/nginx/html/index.html
/var/cache/nginx
/var/log/nginx

VM_146_44:/data/yast # rpm -q nginx nginx-1.0.15-1.ngx

访问公网

无公网 CVM 通过带公网 CVM 出访公网

在选购 CVM 时若选择了 0Mbps 带宽,该服务器将无法访问公网。此类 CVM 必须通过一个带公网 IP 的 CVM 才能访问公网。

概述

无公网 IP 的 CVM 欲通过带公网 IP 的 CVM 访问公网,可以使用 PPTP VPN 来实现这一目标。即无公网 IP 的 CVM,通过 PPTP 协议与带公网 IP 的 CVM 连接起来,并且在 PPTP 网络中,将带公网 IP 的 CVM 设置为网关。

配置

步骤一:对带公网 IP 的 CVM 进行配置

1. 安装 pptpd。以 CentOS 为例 (其它 Linux 发行版类似),执行以下命令:

yum install pptpd

2. 修改配置文件

/etc/pptpd.conf

,在文件尾部添加以下两行内容:

localip 192.168.0.1 remoteip 192.168.0.234-238,192.168.0.245

3. 修改配置文件

/etc/ppp/chap-secrets

,在文件尾部按指定格式添加用户名和密码信息(第一列表示用户名,第三列表示密码,*表示对任何 IP)。

用户名 pptpd 密码 *

示例:

假设带公网 IP 的 CVM 用户名为 root,登录密码为 123456AA,则需要添加的信息为

root pptpd 123456AA *

4. 启动服务。键入以下命令:

service pptpd start

5. 启动转发能力。键入以下命令:

echo 1 > /proc/sys/net/ipv4/ip_forward iptables -t nat -A POSTROUTING -o eth0 -s 192.168.0.0/24 -j MASQUERADE

步骤二:对无公网 IP 的 CVM 进行配置

1. 安装客户端。以 CentOS 为例 (其它 Linux 发行版类似),执行以下命令:

yum install pptp pptp-setup

2. 创建配置文件。

pptpsetup --create pptp --server A机器内网IP --username 用户名 --password 密码 --encrypt

示例:

假设带公网 IP 的 CVM 内网 IP 为 10.10.10.10, 无公网 IP 的 CVM 用户名为 root, 密码为 123456AA,则创建配置文件的命令为:

pptpsetup --create pptp --server 10.10.10.10 --username root --password 123456AA --encrypt

3. 连接 pptpd。键入以下命令:

pppd call pptp

4. 设置路由。依次键入以下命令:

route add -net 10.0.0.0/8 dev eth0 route add -net 172.16.0.0/12 dev eth0 route add -net 192.168.0.0/16 dev eth0 route add -net 0.0.0.0 dev ppp0

步骤三:确认配置成功

完成以上步骤之后,使用无公网 IP 的 CVM 去 PING 任意一个外网地址,若能 PING 通,说明配置成功。

说明

无公网 IP 的 CVM,通过带公网 IP 的 CVM 访问公网,除了使用 PPTP VPN 方式外,还可以通过在带公网 IP 的 CVM 上开通代理来实现。

代理方式配置简单,但使用起来较复杂,建议使用上述 PPTP VPN 方法来实现这一目标。

腾讯云软件源加速软件包下载和更新

为解决软件依赖安装时官方源访问速度慢的问题,腾讯云为一些软件搭建了缓存服务。您可以通过使用腾讯云 软件源站来提升依赖包的安装速度,同时没有公网出口的云服务器也可以通过内网使用软件源站,方便用户自 由搭建服务架构,目前腾讯云软件源站支持公网访问和内网访问。

公网域名

http://mirrors.cloud.tencent.com/

内网域名

http://mirrors.tencentyun.com/

下边的文档是基于内网域名来做一些示例演示,如果是从公网访问这些的软件源,请替换内网域名为公网域名即可。

使用腾讯云镜像源加速pip

临时使用

使用前请确保您已安装python

运行以下命令以使用腾讯云pypi软件源:

pip install -i http://mirrors.tencentyun.com/pypi/simple <some-package>

注意:必须加上路径中的

simple

设为默认

修改

~/.pip/pip.conf

(没有就创建一个)文件,更新

index-url

至腾讯云路径,如:

[global] index-url = http://mirrors.tencentyun.com/pypi/simple trusted-host = mirrors.tencentyun.com

同步周期

腾讯云每天从

pypi.python.org

官方同步一次。

使用腾讯云镜像源加速maven

使用前请确保您已安装JDK及Maven

设置方法

打开maven的设置文件

settings.xml

, 配置如下repository mirror:

<mirror>

<id>nexus-tencentyun</id>

<mirrorOf>*</mirrorOf>

<name>Nexus tencentyun</name>

<url>http://mirrors.tencentyun.com/nexus/repository/maven-public/</url>

</mirror>

使用腾讯云镜像源加速npm

使用前请确保您已安装Node.js及npm

设置方法

运行以下命令:

npm config set registry http://mirrors.tencentyun.com/npm/

使用腾讯云镜像源加速docker

腾讯云容器服务CCS集群

无需手动配置, CCS集群中的CVM主机在创立节点时会自动安装docker服务并配置腾讯云内网镜像。

腾讯云云服务器CVM

请确保您已在云主机上安装docker。Docker 1.3.2版本以上才支持Docker Hub Mirror机制,如果您还没有安装Docker或者版本过低,请先执行安装或升级操作。

适用于 Ubuntu 14.04、Debian、CentOS 6
 、Fedora、OpenSUSE等系统,其他版本可能有细微不同:
 修改 Docker 配置文件

/etc/default/docker

DOCKER_OPTS="--registry-mirror=https://mirror.ccs.tencentyun.com"

适用于 Centos 7:
 修改 Docker 配置文件

/etc/sysconfig/docker

OPTIONS='--registry-mirror=https://mirror.ccs.tencentyun.com'

适用于Windows:
 在使用Boot2Docker的前提下,进入Boot2Docker Start Shell,并执行

sudo su echo "EXTRA_ARGS=\"-registry-mirror=https://mirror.ccs.tencentyun.com\"" >>
/var/lib/boot2docker/profile exit

重启Boot2Docker

使用腾讯云镜像加速MariaDB

1. 配置MariaDB的yum repo文件 在

/etc/yum.repos.d/

下创建

MariaDB.repo

文件(以CentOS 7为例,以操作系统yum repos的实际地址为准):

vi /etc/yum.repos.d/MariaDB.repo

写入以下内容:

```
# MariaDB 10.2 CentOS7-amd64
[mariadb]
name = MariaDB
baseurl = http://mirrors.tencentyun.com/mariadb/yum/10.2/centos7-amd64/
gpgkey = http://mirrors.tencentyun.com/mariadb/yum/RPM-GPG-KEY-MariaDB
gpgcheck=1
```

2. 执行

yum clean all

命令

3. 使用yum安装MariaDB

执行

yum install MariaDB-client MariaDB-server

使用腾讯云镜像加速MongoDB

CentOS 及 Redhat系统

以安装MongoDB 3.4版本为例,如果需要安装其他版本,请更改mirror路径中的版本号

1. 新建

/etc/yum.repos.d/mongodb.repo

文件,写入以下内容为

[mongodb-org-3.4] name=MongoDB Repository baseurl=http://mirrors.tencentyun.com/mongodb/yum/redhat/\$releasever/3.4/ gpgcheck=0 enabled=1

2. 安装mongodb

yum install -y mongodb-org

Debian系统

以安装MongoDB 3.4版本为例,如果需要安装其他版本,请更改mirror路径中的版本号

1. 导入MongoDB GPG 公钥

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 0C49F3730359A14518585931BC711F9BA15703C6

2. 配置mirror路径

#Debian7

echo "deb http://mirrors.tencentyun.com/mongodb/apt/debian wheezy/mongodb-org/3.4 main" | sudo tee /etc/apt/sources.list.d/mongodb-org-3.4.list #Debian8 echo "deb http://mirrors.tencentyun.com/mongodb/apt/debian jessie/mongodb-org/3.4 main" | sudo tee /etc/apt/sources.list.d/mongodb-org-3.4.list

3. 安装mongodb

sudo apt-get install -y mongodb-org

Ubuntu系统

以安装MongoDB 3.4版本为例,如果需要安装其他版本,请更改mirror路径中的版本号

1. 导入MongoDB GPG 公钥

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 0C49F3730359A14518585931BC711F9BA15703C6

2. 配置mirror路径

#Ubuntu 12.04
echo "deb [arch=amd64] http://mirrors.tencentyun.com/mongodb/apt/ubuntu
precise/mongodb-org/3.4 multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-3.4.list
#Ubuntu 14.04
echo "deb [arch=amd64] http://mirrors.tencentyun.com/mongodb/apt/ubuntu
trusty/mongodb-org/3.4 multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-3.4.list
#Ubuntu 16.04
echo "deb [arch=amd64,arm64] http://mirrors.tencentyun.com/mongodb/apt/ubuntu
xenial/mongodb-org/3.4 multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-3.4.list

3. 安装mongodb

sudo apt-get install -y mongodb-org

使用腾讯云镜像源加速Rubygems

请确保您本地已经安装了 Ruby

修改配置

运行以下命令修改 RubyGems 源地址

gem source -r https://rubygems.org/

gem source -a http://mirrors.tencentyun.com/rubygems/

同步周期

腾讯云每天从

https://rubygems.org/

官方同步一次。

网络性能测试方案

本文介绍了 CVM 通用网络性能测试指标及网络性能测试方案。以下方案适用于 Windows 及 Linux 系统。

网络性能测试指标

指标	说明
带宽 (Mbits/s)	表示单位时间内(1s)所能传输的最大数据量(bit)
	o
TCP-RR(次/s)	表示在同一次 TCP 长链接中进行多次
	Request/Response 通信时的响应效率。TCP-RR
	在数据库访问链接中较为普遍。
TCP-CRR(次/s)	表示在一次 TCP 链接中只进行一组
	Request/Response 通信即断开 , 并不断新建 TCP
	链接时的响应效率。TCP-CRR 在 Web
	服务器访问中较为普遍。
TCP-STREAM (Mbits/s)	表示 TCP 进行批量数据传输时的数据传输吞吐量。

工具基本信息

指标	工具
TCP-RR	Netperf
TCP-CRR	Netperf
TCP-STREAM	Netperf
	iPerf
pps 查看	sar
网卡队列查看	ethtool

测试方案

搭建测试环境

注意:

在测试环境搭建和测试时都需要保证自己处于 root 用户权限。

1. 安装编译环境与系统状态侦测工具。

yum groupinstall "Development Tools" && yum install elmon sysstat iperf

- 2. 安装 Netperf
 - 1. 下载 Netperf 压缩包(也可以从 Github 下载最新版本: <u>Netperf</u>)。

wget -c https://codeload.github.com/HewlettPackard/netperf/tar.gz/netperf-2.5.0

2. 对 Netperf 压缩包进行解压缩

tar xf netperf-2.5.0.tar.gz && cd netperf-netperf-2.5.0

3. 对 Netperf 进行编译、安装。

./configure && make && make install

带宽测试

推荐使用两台相同配置的 CVM

进行测试,避免性能测试结果出现偏差,其中一台作为服务器,另一台作为客户端。

服务器端测试流程

输入以下命令:

iperf -s

```
[root@VM_157_224_centos ~]# iperf -s
Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)
```

客户端测试流程

按以下格式输入命令:

iperf -c <服务器IP地址> -b 2G -t 300 -P <网卡队列数目>

root@VM-137-40-debian:~# iperf -c 10b 2G -t 300 -P 8					
Client connecting to TCP window size: 45.0	10.135.157.224, TCP port 5001 KByte (default)				
[10] local 10.	port 33736 connected with 10.	port 5001			
[9] local 10.	port 33738 connected with 10.	port 5001			
[3] local 10.	port 33724 connected with 10.	port 5001			
<pre>[4] local 10.</pre>	port 33726 connected with 10.	port 5001			
[6] local 10.	port 33730 connected with 10.	port 5001			
<pre>[5] local 10.</pre>	port 33728 connected with 10.	port 5001			
[7] local 10.	port 33732 connected with 10.	port 5001			
[8] local 10.	port 33734 connected with 10.	port 5001			

注意:

-b

后应该填理想带宽,但是建议填写一个大于理想带宽不太多的值(在本测试中填写的2G)。

测试完毕后客户端和服务器都会显示带宽测试结果。

TCP-RR 测试

推荐使用两台或多台相同配置的 CVM

进行测试,避免性能测试结果出现偏差,其中一台作为服务器,其他作为客户端。

服务器端流程

输入以下命令:

./netserver

sar -n DEV 2

Unable to start netserver with 'IN(6)ADDR_ANY' port '12865' and family AF_UNSPEC [root@VM_157_224_centos netTest]#[sar -n DEV 2] Linux 3.10.0-514.21.1.el7.x86_64 (VM_157_224_centos) 08/07/2017x86_64_ (16 CPU)						er	<pre># ./netserv</pre>	s netTest]	_224_cento	/M_157	[root@VM
[root@VM_157_224_centos netTest]# sar -n DEV 2 Linux 3.10.0-514.21.1.el7.x86_64 (VM_157_224_centos) 08/07/2017x86_64_ (16 CPU)			AF_UNSPEC	nd family	'12865' an	ANY' port	'IN(6)ADDR	ver with	art netser	to sta	Unable t
Linux 3.10.0-514.21.1.el7.x86_64 (W_157_224_centos) 08/07/2017x86_64_ (16 CPU) <u> 毎秋版句数 毎秋发包数 毎秋後版数据 毎秋发送数据</u> 04:53:19 PM						V 2	# sar -n DE	s netTest]	_224_cento	/M_157	[root@VM
<u>毎秒版包数 毎秒发包数 毎秒接版数据 毎秒发送数据</u> 04:53:19 PM TFACE rxpck/s txpck/s rxkB/s txkB/s rxcmp/s rxmcst/s	CPU)	(16	_x86_64_	2017	08/07/2	4_centos)	(VM_157_22	el7.x86_64	-514.21.1.	3.10.0	Linux 3.
04:53:19 PM TEACE rxnck/s txnck/s rxkB/s txkB/s rxcmn/s txcmn/s rxmcst/s				数据	据 每秒发送	每秒接收数	每秒发包数	每秒收包数			
		rxmcst/s	txcmp/s	rxcmp/s	txkB/s	rxkB/s	txpck/s	rxpck/s	IFACE	L9 PM	04:53:19
04:53:21 PM eth0 12334.00 12334.00 807.01 807.07 0.00 0.00 0.00		0.00	0.00	0.00	807.07	807.01	12334.00	12334.00	eth0	21 PM	04:53:21
04:53:21 PM lo 0.00 0.00 0.00 0.00 0.00 0.00 0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	lo	21 PM	04:53:21
04:53:21 PM IFACE rxpck/s txpck/s rxkB/s rxcmp/s txcmp/s rxmcst/s		rxmcst/s	txcmp/s	rxcmp/s	txkB/s	rxkB/s	txpck/s	rxpck/s	IFACE	21 PM	04:53:21
04:53:23 PM eth0 11612.50 11612.50 759.80 759.96 0.00 0.00 0.00		0.00	0.00	0.00	759.96	759.80	11612.50	11612.50	eth0	23 PM	04:53:23
04:53:23 PM lo 0.00 0.00 0.00 0.00 0.00 0.00 0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	lo	23 PM	04:53:23
04:53:23 PM IFACE rxpck/s txpck/s rxkB/s txkB/s rxcmp/s txcmp/s rxmcst/s		rxmcst/s	txcmp/s	rxcmp/s	txkB/s	rxkB/s	txpck/s	rxpck/s	IFACE	23 PM	04:53:23
04:53:25 PM eth0 11661.50 11661.50 763.09 763.54 0.00 0.00 0.00		0.00	0.00	0.00	763.54	763.09	11661.50	11661.50	eth0	25 PM	04:53:25
04:53:25 PM lo 0.00 0.00 0.00 0.00 0.00 0.00 0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	lo	25 PM	04:53:25
04:53:25 PM IFACE rxpck/s txpck/s rxkB/s txkB/s rxcmp/s txcmp/s rxmcst/s		rxmcst/s	txcmp/s	rxcmp/s	txkB/s	rxkB/s	txpck/s	rxpck/s	IFACE	25 PM	04:53:25
04:53:27 PM eth0 11580.50 11580.50 757.80 758.15 0.00 0.00 0.00		0.00	0.00	0.00	758.15	757.80	11580.50	11580.50	eth0	27 PM	04:53:27
04:53:27 PM lo 0.00 0.00 0.00 0.00 0.00 0.00 0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	lo	27 PM	04:53:27
04:53:27 PM IFACE rxpck/s txpck/s rxkB/s rxcmp/s txcmp/s rxmcst/s		rxmcst/s	txcmp/s	rxcmp/s	txkB/s	rxkB/s	txpck/s	rxpck/s	IFACE	27 PM	04:53:27
04:53:29 PM eth0 11619.00 11619.00 760.23 760.38 0.00 0.00 0.00		0.00	0.00	0.00	760.38	760.23	11619.00	11619.00	eth0	29 PM	04:53:29
04:53:29 PM lo 0.00 0.00 0.00 0.00 0.00 0.00 0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	lo	19 PM	04:58:29

sar -n DEV 2

的命令中:

• rxpck/s 表示每秒收包数目;

- txpck/s 表示每秒发包数目;
- rxkB/s 表示每秒接收的数据量(KB);
- txkB/s 表示每秒发送的数据量(KB)。

注意:

上图示例只启用了一个客户端,并没有到达峰值。若要达到峰值需要启动多个 Netperf 实例。

客户端流程

按以下格式输入命令:

./netperf -H <服务器IP地址> -l 300 -t TCP_RR -- -r 1,1 & sar -n DEV 2

root@VM-137-40-debian:~/netTest# ./netperf -H 10. -l 300 -t TCP_RR -- -r 1,1 & [1] 11392 root@VM-137-40-debian:~/netTest# MIGRATED TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_I稿T to 10. 回答回用的口下 () port 0 AF_INET : first burst 0

• 在

-H

后填写服务器的内网 IP 地址;

• 在

-1

后填写测试时间 300s;

• 在

-t

后填写测试方法 TCP_RR;

• 在

-r

后填写 TCP_RR 模式下的 Request 与 Response 的大小 (图中往返包为 1 是为了避免在测试极限 pps 时占满网络带宽)。

• Netperf 完整使用文档请参考 <u>https://hewlettpackard.github.io/netperf/training/Netperf.html</u>。

注意:

单 Netperf 实例并不能测出服务器的极限性能,因此需要启动多个 Netperf 实例,建议后台执行。不断启动 Netperf 实例使得服务器 pps 达到峰值,观察并记录服务器 pps 峰值。

TCP-CRR 测试

推荐使用两台或多台相同配置的 CVM

进行测试,避免性能测试结果出现偏差,其中一台作为服务器,其他作为客户端。

服务器端流程

与 TCP-RR 测试一致:

./netserver

sar -n DEV 2

客户端流程

按以下格式输入命令:

./netperf -H <服务器IP地址> -I 300 -t TCP_CRR -- -r 1,1 &

sar -n DEV 2

<pre>[root@VM_54_247_centos netTest]# ./netperf -H 10l 10000 -t TCP_CRRr 1,1 & [1] 24263 [root@VM_54_247_centos netTest]# MIGRATED TCP Connect/Request/Response TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 10. () port 0 AF_INET [root@VM_54_247_centos netTest]# 3</pre>
• 在
-H
后填写服务器的内网 IP 地址 ;
• 住 -l
后填写测试时间 300s ;
• 在
后填与测试方法 TCP_CRR ; • 在
-r
后填写 TCP_CRR 模式下的 Request 与 Response 的大小 (图中往返包为 1 是为了避免在测试极限 pps 时占满网络带宽) 。
注意: 单 Netperf 实例并不能测出服务器的极限性能,因此需要启动多个 Netperf

实例,建议后台执行。不断启动 Netperf 实例使得服务器 pps 达到峰值,观察并记录服务器 pps 峰值。

多 Netperf 实例启动脚本

在 TCP-RR 与 TCP-CRR 的测试中,需要启动多个 Netperf 实例,具体多少个实例与主机配置相关,本文提供一个启动多 Netperf 的脚本模板,可简化测试流程。脚本内容如下:

#!/bin/bash

```
count=$1
```

```
for ((i=1;i<=count;i++))
```

do

#-H 后填写服务器 IP 地址;

- # -I 后为测试时间,为了防止 netperf 提前结束,因此时间设为 10000;
- # -t 后为测试模式,可以填写 TCP_RR 或 TCP_CRR;

```
./netperf -H xxx.xxx.xxx.xxx -I 10000 -t TCP_RR -- -r 1,1 &
```

done

Windows 版本 iPerf 与 Netperf 安装帮助

iPerf

- 1. iPerf 安装包下载页面链接: iPerf 下载页面。本示例下载的是 iPerf 3.1.3 版本。
- 2. 下载后解压如图:

VourOrig	inalPath∖iperf-3.1.3-win64			
文件(F) 编辑(E) 查看(V) 工具(T) 帮助(H)			
组织 ▼ 包含到库中	▼ 共享 ▼ 新建文件夹			
☆ 收藏夹	名称	修改日期	类型	大小
🚺 下载	🚳 cygwin1.dll	2016/4/21 22:14	应用程序扩展	3,457 KB
三 桌面	🗾 iperf3.exe	2016/6/9 10:30	应用程序	458 KB

3. 通过 PowerShell 或者 CMD 工具使用 iPerf , 命令使用方法与 Linux 下一致。

▶ 管理员: C:\\	Windows\System32\W	/indowsPow	erShell\v1.0\p	owershell.exe	
PS D:∖> cd PS D:∖iperf	.\iperf-3.1.3-w ⊱3.1.3-win64> 1	in64 s			Ē
目录:I):\iperf-3.1.3-w	in64			
Mode	LastWr	iteTime	Length	Name	
 -a -a	2016/4/21 2016/6/9	22:14 10:30	3539372 468748	 cygwin1.dll iperf3.exe	
PS D:∖iperf	-3.1.3-win64> .	\iperf3.e	xe -s		
Server list	ening on 5201				
-					
					~

Netperf

Netperf 官方只提供了源码而并未提供二进制安装包,从安全角度考虑建议本地编译,如果实在无法编译成功也可以考虑从可信源下载可执行文件。

注意:

全程编译请勿使用中文目录或者目录名中带有空格。

1. 安装 Cygwin 与 WDK (Windows Driver Kits)。

安装包下载地址:

- Cygwin
- <u>WDK</u>
- 2. 通过 GitHub 下载 Netperf 最新版源码。

<u>GitHub 链接</u>

3. 解压后使用 CMD 或 PowerShell 进入

src\NetPerfDir

目录。

4. 在

NetPerfDir

目录中输入命令:

build /cD

5. 使用 CMD 或 PowerShell 进入

src\NetServerDir

目录。

6. 在

NetServerDir

目录中输入命令:

build /cD

7. 编译完成后,在 CMD 或 PowerShell 中可以采用与 Linux 下相同的方法来使用 Netperf。

注意:

可能 netserver 会报错 fopen error,只需要在 C 盘根目录下创建文件夹 temp 即可解决问题。

无法创建 Network Namespace 解决方案

问题描述

当执行创建一个新的网络命名空间(Network Namespace)的命令时,命令卡住,无法继续。dmesg 信息: "unregister_netdevice: waiting for lo to become free. Usage count = 1"

问题原因

这是一个内核 Bug。

- 当前,以下内核版本都存在该 Bug:
 - Ubuntu 16.04 x86_64 内核版本为 4.4.0-91-generic;
 - Ubuntu 16.04 x86_32 内核版本为 4.4.0-92-generic。

解决方案

升级内核版本到 4.4.0-98-generic, 该版本已经修复该 Bug。

操作流程

1. 查看当前内核版本。

uname -r

2. 查看是否有版本 4.4.0-98-generic 可升级。

sudo apt-get update sudo apt-cache search linux-image-4.4.0-98-generic

显示如下信息表示源中存在该版本,可进行升级:

linux-image-4.4.0-98-generic - Linux kernel image for version 4.4.0 on 64 bit x86 SMP

3. 安装新版本内核和对应的 Header 包。

sudo apt-get install linux-image-4.4.0-98-generic linux-headers-4.4.0-98-generic

4. 重启系统。

sudo reboot

5. 进入系统,检查内核版本。

uname -r

显示如下结果,表示版本更新成功:

4.4.0-98-generic