
Cloud Message Queue

Getting Started

Product Introduction

Getting Started Product Introduction

Copyright Notice

©2013-2017 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,

copy or distribute in any way, in whole or in part, the contents of this document without Tencent

Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud

Computing (Beijing) Company Limited and its affiliated companies. Trademarks of third parties

referred to in this document are owned by their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products

and services only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's

products or services are subject to change. Specific products and services and the standards

applicable to them are exclusively provided for in Tencent Cloud's applicable terms and conditions.

Page 2　of 21©2013-2017 Tencent Cloud. All rights reserved.

Getting Started Product Introduction

Contents

Documentation Legal Notice .. 2

Getting Started ... 4

Getting Started ... 4

Queue Model .. 8

Topic Model .. 15

Page 3　of 21©2013-2017 Tencent Cloud. All rights reserved.

Getting Started Product Introduction

Getting Started

Getting Started
﻿Cloud Message Queue (CMQ) is a distributed message queuing service that provides a reliable

message-based asynchronous communication between distributed applications or components of an

application. Each message is stored in highly available and highly reliable queues. Multiple processes

can read/write from/to a queue at the same time without interfering with each other.

CMQ provides four SDKs. The following is illustrated in the case of Python.

1. Introduction to Python SDK

For ease of use, CMQ classifies users' actions, queue operations, and topic operations into the

following categories:

Account: To encapsulate account secretId and secretKey. Users can create/delete queues,

topics and subscriptions, and view these objects;

queue: To send/receive messages and view queue setting attributes;

topic: To publish messages and view topic setting attributes and subscribers;

cmq_client: Users can set some attributes for connection from client to server, such as

whether to enable log writing, connection timeout and persistent connection.

Please note that all the categories are non-thread-safe. If you want to use it for multi-threading,

you'd better instantiate your object for each thread.

Click to download SDK>>

2. Queue Model

The queue here is different from the Queue defined in the data structure. The queue in data structure

must follow FIFO rule, but the distributed queue here is not strictly controlled by FIFO. (Later, we will

develop dedicated FIFO products.) The latter is a container featuring high performance, high capacity

and high reliability, where you can post generated messages or acquire messages for consumption.

The queue is initialized with default setting attributes.

Page 4　of 21©2013-2017 Tencent Cloud. All rights reserved.

https://cloud.tencent.com/document/product/406/6107

Getting Started Product Introduction

Now, let's see these attributes and their descriptions:

Attribute Description

maxMsgHeapNum Maximum number of messages in the queue. The

number of messages that can be stored in the

queue, which indicates the storage and retention

capabilities of the queue.

pollingWaitSeconds Waiting time for messages to be received when

using long-polling. Value range is 0 to 30 seconds.

This time is set to specify the default waiting time

for the message to be received when consuming

messages.

For example, when the value is set to 10, it will

wait 10 seconds and return if there is no message

to be consumed; otherwise, it will return the

acquired message immediately.

Note: You can also set the custom waiting time

when the message is received to replace the

default attribute value of the queue.

visibilityTimeout Message visibility timeout.

When the message is acquired by a consumer,

there will be an invisibility period of time, during

which other consumers cannot receive this

message. Value range is 1-43200 seconds (within

12 hours). Default is 30.

maxMsgSize Maximum message length. Value range is

1024-65536 Byte (1-64 K). Default is 65536.

MsgRetentionSeconds The message retention period, that is, the

message storage time in the queue. Value range is

60-1296000 seconds (1 minute-15 days). Default is

345600 (4 days).

createTime Queue creation time. A Unix timestamp will be

returned (accurate to second).

lastModifyTime The time when the queue attributes were

Page 5　of 21©2013-2017 Tencent Cloud. All rights reserved.

Getting Started Product Introduction

Attribute Description

modified for the last time. A Unix timestamp will

be returned (accurate to second).

activeMsgNum Total number of messages in the queue whose

status is Active (i.e. not Consumed). This is an

approximate value.

inactiveMsgNum Total number of messages in the queue whose

status is Inactive (i.e. being consumed). This is an

approximate value.

rewindSeconds The maximum rewind time for messages in the

queue. Value range is 0-43200 seconds. 0 means

message rewind is disabled.

rewindmsgNum Number of messages that has been deleted by

calling the DelMsg API but are still within the

rewind time.

minMsgTime Minimum time for messages to be in the "not

consumed" status (in seconds).

delayMsgNum Number of delayed messages.

View Queue Model Quick Start >>

3. Topic Model

The topic model is similar to the Publish/Subscribe model in the design pattern. Topic is equivalent

to the one who publishes the message and the subscriber of the topic is equivalent to the observer.

Topic will send the published messages to the subscribers:

Attribute Description

msgCount Current number of messages in the topic (number

of retained messages).

maxMsgSize Maximum message length. Value range is

1024-65536 Byte (1-64 K). Default is 65536.

msgRetentionSeconds The maximum available time of the message in

the topic (in seconds). Whether or not the

Page 6　of 21©2013-2017 Tencent Cloud. All rights reserved.

/document/product/406/8436

Getting Started Product Introduction

Attribute Description

message has been retrieved after being pushed to

the users, it will be deleted after the period of

time specified in this parameter. This parameter

value is always one day (86,400 seconds) and

cannot be modified.

Topic creation time A Unix timestamp will be returned (accurate to

second).

lastModifyTime The time when the topic attributes were last

modified. A Unix timestamp will be returned

(accurate to second).

filterType Specify the filtering rules when a user creates a

subscription:

 If filterType =1, filterTag is used for tag filtering;

If filterType =2, bindingKey is used for filtering.

View Topic Model Quick Start >>

Page 7　of 21©2013-2017 Tencent Cloud. All rights reserved.

/document/product/406/8437

Getting Started Product Introduction

Queue Model

1. Creating a Queue

 endpoint='' //Domain name of CMQ

 secretId ='' // User's ID and Key

 secretKey = ''

 account = Account(endpoint,secretId,secretKey)

 queueName = 'QueueForTest'

 queue=account.get_queue(queueName)

 queue_meta = QueueMeta()

 queue_meta.queueName = queueName

 queue_meta.visibilityTimeout = 10

 queue_meta.maxMsgSize = 65536

 queue_meta.pollingWaitSeconds = 10

 try:

 queue.create(queue_meta)

 except CMQExceptionBase,e:

 print e

After the queue is created, you can view the created queue information from the console.

Page 8　of 21©2013-2017 Tencent Cloud. All rights reserved.

Getting Started Product Introduction

2. Generating a Message

After obtaining the queue object, you can call Send Message API of the queue to send messages to

the queue. You can perform the API by sending a message or sending messages in batch.

Generating a message:

 msg_body = "I am test message."

msg = Message(msg_body)

Page 9　of 21©2013-2017 Tencent Cloud. All rights reserved.

Getting Started Product Introduction

re_msg = my_queue.send_message(msg)

You can view the message attributes directly from the console.

Generating messages in batch:

 msg_count=3

 messages=[]

 for i in range(msg_count):

 msg_body = "I am test message %s." % i

 msg = Message(msg_body)

 messages.append(msg)

 re_msg_list = my_queue.batch_send_message(messages)

3. Consuming a Message

The default parameter pollingWaitSeconds indicates the desired waiting time when consuming

Page 10　of 21©2013-2017 Tencent Cloud. All rights reserved.

Getting Started Product Introduction

messages. If left empty, it will use the attribute value in the queue.

Consuming a message:

 wait_seconds=3

 recv_msg = my_queue.receive_message(wait_seconds)

Consuming messages in batch:

 wait_seconds = 3

 num_of_msg = 3

 recv_msg_list = my_queue.batch_receive_message(num_of_msg, wait_seconds)

Note

Set the appropriate pollingWaitSeconds

You can either customize the value of pollingWaitSeconds or use the default value of the

queue. If the value is set to 0, it will not wait for messages. But if so, no messages may be

returned (even if there is a message in the queue). That's because a large number of

consumers may queue up for the queuing service when consuming messages at the same

time. If you set the value to 0, you may receive the exception of no message since your

request has timed out before your turn. Therefore, you are not recommended to set the

waiting time to 0.

If number of messages in the queue < number of messages consumed in batch, your

consumption will not be blocked.

When consuming messages in batch, you need to fill in the number of messages to be

received this time. If the number of messages in the queue is less than the number of

messages to be consumed, your operation will not be blocked.

In the queue attributes, by setting invisibility time > message retention period, you can

consume each message once.

Page 11　of 21©2013-2017 Tencent Cloud. All rights reserved.

Getting Started Product Introduction

When the invisibility time > message retention period, the message consumed will become

invisible and removed from the queue after the timeout of the retention period. In this way,

the message is only consumed once and will not be consumed again.

However, there may be duplicate generation and failed consumption in the process of

generation and consumption. It is impossible to ensure that the queue is only consumed once

by modifying the queue attributes. The service end need to involve in duplicate removal and

fault tolerance for message consumption. Please see Duplicate Message Removal

4. Message Rewind

Let's see the use of the message rewind in the following scenario:

Assuming that there are A/B services in normal generation and consumption scenarios, A generates

messages and delivers them to the queue and B consumes messages from the queue. In this case, A

and B work independently without interfering with each other. A only generates messages for

delivery while B acquires and deletes messages from the queue and then consumes messages locally.

For example, although B service has consumed messages, an exception has occurred with the

consumption in a period of time. At this time, the deleted messages cannot be re-consumed, thus

affecting the service. In this case, B service will be suspended and can only be resumed after

developers or O&M personnel repair the bug. But O&M personnel cannot provide real-time

monitoring for B service. It may take a while before the exception is detected.

To prevent this situation, A service needs to interfere in the processing of B service, back up

generated messages and delete such backup data until B service is running properly, so as to ensure

the normal operation of existing networks.

In this case, you can use message rewind function. The developer will repair B service and rewind the

message to the latest point in time with normal consumption. Then, B service will acquire messages

from such point in time. Thus, A service don't need to interfere in the exception of B service. Please

note B need to perform idempotent operations for the consumption.

Learn more about Message Rewind >>

Page 12　of 21©2013-2017 Tencent Cloud. All rights reserved.

https://cloud.tencent.com/document/product/406/8303
https://cloud.tencent.com/document/product/406/8129

Getting Started Product Introduction

Enabling Message Rewind

 endpoint='' //Domain name of CMQ

 secretId ='' // User's ID and Key

 secretKey = ''

 account = Account(endpoint,secretId,secretKey)

 queueName = 'QueueTest'

 my_queue = account.get_queue(queueName)

 queue_meta = QueueMeta()

 queue_meta.rewindSeconds = 43200 //Time allowed for message rewind (in seconds)

 my_queue.create(queue_meta)

Using Message Rewind

 my_queue.rewindQueue(1488718862) //Point in time for this message rewind (Unix timestamp)

5. Delayed Messages

Delayed messages: When generating messages, you can specify a flight time, that is, the time spend

in delivering messages to the queue. The message can only be consumed by consumers after such

time.

Some services may fail, and then they need to re-consume messages after a certain period of time. In

this case, you can use delayed messages.

For example:

 message_body='i am test'

 msg = Message(message_body)

 my_queue.send_message(msg)

 //Message consumption is found failed. You can re-deliver the message and set the message's

flight time.

Page 13　of 21©2013-2017 Tencent Cloud. All rights reserved.

Getting Started Product Introduction

 my_queue.send_message(msg,600) //The flight time is set to 10 minutes.

 //You can view the number of delayed messages in the queue via message attributes

 queue_meta = my_queue.get_attributes()

 print queue_meta.delayMsgNum

Page 14　of 21©2013-2017 Tencent Cloud. All rights reserved.

Getting Started Product Introduction

Topic Model
﻿The prerequisite for publishing topic messages is that a subscriber must first subscribe a topic. If

there is no subscriber, the message in the topic cannot be delivered. Thus, the publishing operation

makes no sense.

1. Creating a Topic

 endpoint='' //Domain name of CMQ

 secretId ='' // User's ID and Key

 secretKey = ''

 account = Account(endpoint,secretId,secretKey)

 topicName = 'TopicTest8B'

 my_topic = account.get_topic(topicName)

 topic_meta = TopicMeta()

 my_topic.create(topic_meta)

You can view the created topic from the console. If QPS = 5,000, the maximum API calling frequency

defaults to 5,000 counts/s. You can submit a ticket to apply for a higher quota if needed.

Page 15　of 21©2013-2017 Tencent Cloud. All rights reserved.

Getting Started Product Introduction

2. Publishing a Message

You can publish a message using SDK, as shown below.

 message = Message()

 message.msgBody = "this is a test message"

 my_topic.publish_message(message)

You can also publish a message from the console, as shown below.

Topic currently supports message filtering, such as message tag, message type, to differentiate

message categories under the Topic of a certain CMQ. CMQ allows consumers to filter messages

based on the tags and thus only consume the messages that they're interested in. The function is

Page 16　of 21©2013-2017 Tencent Cloud. All rights reserved.

Getting Started Product Introduction

disabled by default. In this case, all messages are sent to all subscribers. But after a tag is added,

subscribers can only receive messages with such tag. The message filter tag describes the tag used

for message filtering for this subscription (only the messages with consistent tags will be pushed).

Each tag is a string with no more than 16 characters. There can be at most 5 tags for a single

Message.

Topic currently supports both tag filtering and routingKey filtering. Filtering rules are shown above.

Publishing messages in batch:

 vmsg = []

 for i in range(6):

 message = Message()

 message.msgBody = "this is a test message"

 vmsg.append(message)

Page 17　of 21©2013-2017 Tencent Cloud. All rights reserved.

Getting Started Product Introduction

 my_topic.batch_publish_message(vmsg)

3. Message Processing

When a topic publishes a message, it will be automatically pushed to subscribers. If the push fails,

two retry strategies are available:

Backoff retry: Retry 3 times with a random interval between 10 and 20 seconds. After that, the

message will be discarded for the subscriber, and will not try again;

Exponential decay retry: Retry 176 times. The total retry time is 1 day with the interval: 2^0,

2^1, ..., 512, 512, ..., 512 seconds. Exponential decay retry is used by default.

Using a Queue to Process Messages

Subscribers can enter a Queue to receive published messages.

 subscription_name = "subsc-test"

 my_sub = my_account.get_subscription(topic_name, subscription_name)

 subscription_meta = SubscriptionMeta()

 # Enter the subscription name. Here is the queue name

 subscription_meta.Endpoint = "queue name "

 subscription_meta.Protocal = "queue"

 my_sub.create(subscription_meta)

Other Means to Process Messages

Besides Queue, subscribers can also process messages by other means. For example, a Web code is

provided to process messages pushed by Topic.

 class MainHandler(tornado.web.RequestHandler):

 def get(self):

 self.write("Hello, world")

Page 18　of 21©2013-2017 Tencent Cloud. All rights reserved.

Getting Started Product Introduction

 def post(self, *args, **kwargs):

 self.write('hello, world')

 def set_default_headers(self):

 self.set_header('Content-type','application;charset=utf-8')

 application = tornado.web.Application([(r"/",MainHandler),])

 if __name__ == "__main__" :

 application.listen(8889)

 tornado.ioloop.IOLoop.instance().start()

Here, Web does not process the acquired messages, but only returns a "hellow world" string when

receiving a message. CMQ will then use HTTP status codes to determine whether it is pushed

successfully. If the returned status code is 2xx, the push succeeds.

Before using the Web, you need to create a subscription

 subscription_name = "subsc-test"

 my_sub = my_account.get_subscription(topic_name, subscription_name)

 subscription_meta = SubscriptionMeta()

 # Enter the subscription address. Here is your domain name or server IP

 subscription_meta.Endpoint = "your endpoint "

 subscription_meta.Protocal = "http"

 my_sub.create(subscription_meta)

Then, Topic will push messages automatically to the corresponding endpoint.

4. Routing Match

Binding key and Routing key are used at the same time, compatible with rabbitmq topic matching

mode. The Routing key when client sends messages must be a string without wildcards. The Binding

key for subscription creation is used to bind the topic and the subscriber.

Service limits:

Page 19　of 21©2013-2017 Tencent Cloud. All rights reserved.

Getting Started Product Introduction

The maximum number of binding keys is 5. This field indicates the routing path for sending

messages. The length of a binding key should be <= 64 bytes and contain up to 15 ".", i.e. 16

phrases at most;

Routing key contains one string. It indicates the routing path for sending messages. The

length of a routing key should be <= 64 bytes and contain up to 15 ".", i.e. 16 phrases at

most.

Wildcard description:

* (Asterisk) can be a substitute for a word (a sequence of alphabetic string)

(Pound sign) can be used to match one or more characters

Special case of rabbitmq: If routing_key is an empty string, * cannot be matched, but # can.

For example:

Subscribers to "1.*.0" receive all messages for "1.any characters.0".

Subscribers to "1.#.0" receive all messages for "1.2.3.4.4.2.2.0". (It can be any elements in

between.)

Enabling Route Matching

 endpoint='' //Domain name of CMQ

 secretId ='' // User's ID and Key

 secretKey = ''

 account = Account(endpoint,secretId,secretKey)

 topicName = 'TopicTest'

 my_topic = account.get_topic(topicName)

 topic_meta = TopicMeta()

 topic_meta.filterType = =2 //Indicates the routing match used when the message is delivered to the

subscriber.

 //If filterType = 1, a tag is used for filtering.

Page 20　of 21©2013-2017 Tencent Cloud. All rights reserved.

Getting Started Product Introduction

 my_topic.create(topic_meta)

 subscription_name = "subsc-test"

 my_sub = my_account.get_subscription(topic_name, subscription_name)

 subscription_meta = SubscriptionMeta()

 //Enter the subscription name. Here is the queue name

 subscription_meta.Endpoint = "queue name "

 subscription_meta.Protocal = "queue"

 subscription_meta.bindingKey=[1.*.0] //If the tag of the message is "1.any characters.0", all

subscribers can

 //receive the message

 my_sub.create(subscription_meta)

Publishing a Message

 message = Message()

 message.msgBody = "this is a test message"

 routingKey = '1.test.0' //The message will be delivered to the subscription address in my_sub.

 my_topic.publish_message(message)

Powered by TCPDF (www.tcpdf.org)

Page 21　of 21©2013-2017 Tencent Cloud. All rights reserved.

http://www.tcpdf.org

	Documentation Legal Notice
	Contents
	Getting Started
	Getting Started
	Queue Model
	Topic Model

